Mid-infrared Fourier-domain optical coherence tomography with a pyroelectric linear array

被引:41
|
作者
Zorin, Ivan [1 ]
Su, Rong [2 ]
Prylepa, Andrii [1 ]
Kilgus, Jakob [1 ]
Brandstetter, Markus [1 ]
Heise, Bettina [1 ]
机构
[1] Res Ctr Mat Characterizat & Nondestruct Testing, Sci Pk 2,Altenberger Str 69, A-4040 Linz, Austria
[2] Univ Nottingham, Fac Engn, Mfg Metrol Team, Nottingham NG8 1BB, England
来源
OPTICS EXPRESS | 2018年 / 26卷 / 25期
基金
欧盟地平线“2020”;
关键词
SWEPT SOURCE; SENSITIVITY; RESOLUTION; RANGE;
D O I
10.1364/OE.26.033428
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical technology in the mid-infrared wavelength range is currently a rapidly developing field initiated by the availability of novel high-power and spatially coherent sources. Non-destructive testing techniques based on these sources are very promising for industrial and medical applications. However, there are still many engineering problems due to the technical challenges and high prices of the optical elements suitable for the mid-infrared region. In this paper, we report the development and performances of the first mid-infrared Fourier-domain optical coherence tomography based on a supercontinuum source and low-cost pyroelectric detector. The system is designed to operate in the spectral region around 4 mu m. Experimental results are demonstrated for detections of embedded microstructures in ceramic materials and subsurface oil paint layers. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:33428 / 33439
页数:12
相关论文
共 50 条
  • [1] Time-encoded mid-infrared Fourier-domain optical coherence tomography
    Zorin, Ivan
    Gattinger, Paul
    Prylepa, Andrii
    Heise, Bettina
    OPTICS LETTERS, 2021, 46 (17) : 4108 - 4111
  • [2] Time-encoded mid-infrared Fourier-domain optical coherence tomography (vol 46, 4108, 2021)
    Zorin, Ivan
    Gattinger, Paul
    Prylepa, Andrii
    Heise, Bettina
    OPTICS LETTERS, 2021, 46 (22) : 5541 - 5541
  • [3] Fourier phase in Fourier-domain optical coherence tomography
    Uttam, Shikhar
    Liu, Yang
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2015, 32 (12) : 2286 - 2306
  • [4] Time-Gated Infrared Fourier-Domain Optical Coherence Tomography
    Muller, Matthew S.
    Fraser, James M.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 158 - 159
  • [5] Mid-infrared optical coherence tomography
    Colley, Christopher S.
    Hebden, Jeremy C.
    Delpy, David T.
    Cambrey, Alison D.
    Brown, Robert A.
    Zibik, Evgeny A.
    Ng, Wing H.
    Wilson, Luke R.
    Cockburn, John W.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (12):
  • [6] Pachymetric mapping with Fourier-domain optical coherence tomography
    Li, Yan
    Tang, Maolong
    Zhang, Xinbo
    Salaroli, Camila H.
    Ramos, Jose L.
    Huang, David
    JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2010, 36 (05): : 826 - 831
  • [7] Time-domain interpolation for Fourier-domain optical coherence tomography
    Zhang, Yudong
    Li, Xiqi
    Wei, Ling
    Wang, Kai
    Ding, Zhihua
    Shi, Guohua
    OPTICS LETTERS, 2009, 34 (12) : 1849 - 1851
  • [8] Optical coherence domain mid-infrared spectroscopy
    Kobayashi, Masateru
    Tanaka, Takeshi
    Ishizawa, Hiroaki
    Kanai, Hiroyuki
    Nishimatsu, Toyonori
    Toba, Eiji
    2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 2042 - +
  • [9] Characterization of coated optical fibers by Fourier-domain optical coherence tomography
    Jasapara, J
    Wielandy, S
    OPTICS LETTERS, 2005, 30 (09) : 1018 - 1020
  • [10] Macular thickness of Chinese with fourier-domain optical coherence tomography
    Yu Weihong
    Zheng Lin
    Dai Rongping
    Zhang Zhiqiao
    Dong Fangtian
    ACTA OPHTHALMOLOGICA, 2011, 89 (01) : E104 - E105