Comparison of automatic liver volumetry performance using different types of magnetic resonance images

被引:5
作者
Saunders, Sara L. [1 ,2 ]
Clark, Justin M. [3 ]
Rudser, Kyle [3 ]
Chauhan, Anil [4 ]
Ryder, Justin R. [5 ,6 ]
Bolan, Patrick J. [2 ]
机构
[1] Univ Minnesota, Coll Sci & Engn, Dept Biomed Engn, Minneapolis, MN 55455 USA
[2] Univ Minnesota Med Sch Twin Cities, Ctr Magnet Resonance Res, Dept Radiol, Minneapolis, MN USA
[3] Univ Minnesota, Div Biostat, Sch Publ Hlth, Minneapolis, MN 55455 USA
[4] Univ Minnesota Med Sch Twin Cities, Dept Radiol, Minneapolis, MN USA
[5] Univ Minnesota Med Sch Twin Cities, Dept Pediat, Minneapolis, MN USA
[6] Univ Minnesota Med Sch Twin Cities, Ctr Pediat Obes Med, Minneapolis, MN USA
关键词
Convolutional neural networks; Segmentation; Dixon; NAFLD; Volumetry; MRI; BARIATRIC SURGERY; FAT-FRACTION; DENSITY; DISEASE; TISSUE; NAFLD; DIET;
D O I
10.1016/j.mri.2022.05.002
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Measurements of liver volume from MR images can be valuable for both clinical and research applications. Automated methods using convolutional neural networks have been used successfully for this using a variety of different MR image types as input. In this work, we sought to determine which types of magnetic resonance images give the best performance when used to train convolutional neural networks for liver segmentation and volumetry. Abdominal MRI scans were performed at 3 Tesla on 42 adolescents with obesity. Scans included Dixon imaging (giving water, fat, and T2* images) and low-resolution T2-weighted scout images. Multiple convolutional neural network models using a 3D U-Net architecture were trained with different input images. Whole-liver manual segmentations were used for reference. Segmentation performance was measured using the Dice similarity coefficient (DSC) and 95% Hausdorff distance. Liver volume accuracy was evaluated using bias, precision, intraclass correlation coefficient, normalized root mean square error (NRMSE), and Bland-Altman analyses. The models trained using both water and fat images performed best, giving DSC = 0.94 and NRMSE = 4.2%. Models trained without the water image as input all performed worse, including in participants with elevated liver fat. Models using the T2-weighted scout images underperformed the Dixon-based models, but provided acceptable performance (DSC = 0.92, NMRSE =6.6%) for use in longitudinal pediatric obesity interventions. The model using Dixon water and fat images as input gave the best performance, with results comparable to interreader variability and state-of-the-art methods.
引用
收藏
页码:16 / 23
页数:8
相关论文
共 35 条
[1]   Impact of non-alcoholic fatty liver disease on liver volume in humans [J].
Bian, Hua ;
Hakkarainen, Antti ;
Zhou, You ;
Lundbom, Nina ;
Olkkonen, Vesa M. ;
Yki-Jarvinen, Hannele .
HEPATOLOGY RESEARCH, 2015, 45 (02) :210-219
[2]   Agreement between methods of measurement with multiple observations per individual [J].
Bland, J. Martin ;
Altman, Douglas G. .
JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2007, 17 (04) :571-582
[3]   NAFLD: A multisystem disease [J].
Byrne, Christopher D. ;
Targher, Giovanni .
JOURNAL OF HEPATOLOGY, 2015, 62 :S47-S64
[4]  
Chollet F., KERAS
[5]  
Cicek O., 2016, Medical Image Computing and Computer-Assisted Intervention, V9901, P424, DOI [DOI 10.1007/978-3-319-46723-8_49, DOI 10.1007/978-3-319-46723-849]
[6]   MRI estimated changes in visceral adipose tissue and liver fat fraction in patients with obesity during a very low-calorie-ketogenic diet compared to a standard low-calorie diet [J].
Cunha, G. M. ;
Correa de Mello, L. Lugarino ;
Hasenstab, K. A. ;
Spina, L. ;
Bussade, I ;
Prata Mesiano, J. Marques ;
Coutinho, W. ;
Guzman, G. ;
Sajoux, I .
CLINICAL RADIOLOGY, 2020, 75 (07) :526-532
[7]  
Developers T., **DATA OBJECT**, P2021, DOI 10.5281/zenodo.5645375
[8]   Changes in liver volume and body composition during 4 weeks of low calorie diet before laparoscopic gastric bypass [J].
Edholm, David ;
Kullberg, Joel ;
Karlsson, F. Anders ;
Haenni, Arvo ;
Ahlstrom, Hakan ;
Sundbom, Magnus .
SURGERY FOR OBESITY AND RELATED DISEASES, 2015, 11 (03) :602-606
[9]   Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets [J].
Heimann, Tobias ;
van Ginneken, Bram ;
Styner, Martin A. ;
Arzhaeva, Yulia ;
Aurich, Volker ;
Bauer, Christian ;
Beck, Andreas ;
Becker, Christoph ;
Beichel, Reinhard ;
Bekes, Gyoergy ;
Bello, Fernando ;
Binnig, Gerd ;
Bischof, Horst ;
Bornik, Alexander ;
Cashman, Peter M. M. ;
Chi, Ying ;
Cordova, Andres ;
Dawant, Benoit M. ;
Fidrich, Marta ;
Furst, Jacob D. ;
Furukawa, Daisuke ;
Grenacher, Lars ;
Hornegger, Joachim ;
Kainmueller, Dagmar ;
Kitney, Richard I. ;
Kobatake, Hidefumi ;
Lamecker, Hans ;
Lange, Thomas ;
Lee, Jeongjin ;
Lennon, Brian ;
Li, Rui ;
Li, Senhu ;
Meinzer, Hans-Peter ;
Nemeth, Gabor ;
Raicu, Daniela S. ;
Rau, Anne-Mareike ;
van Rikxoort, Eva M. ;
Rousson, Mikael ;
Rusko, Laszlo ;
Saddi, Kinda A. ;
Schmidt, Guenter ;
Seghers, Dieter ;
Shimizu, Akinobu ;
Slagmolen, Pieter ;
Sorantin, Erich ;
Soza, Grzegorz ;
Susomboon, Ruchaneewan ;
Waite, Jonathan M. ;
Wimmer, Andreas ;
Wolf, Ivo .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1251-1265
[10]   Effects of very low calorie diets on liver size and weight loss in the preoperative period of bariatric surgery: a systematic review [J].
Holderbaum, Mariana ;
Casagrande, Daniela Schaan ;
Sussenbach, Samanta ;
Buss, Caroline .
SURGERY FOR OBESITY AND RELATED DISEASES, 2018, 14 (02) :237-244