Micromechanical properties of pyrolytic carbon with interlayer crosslink

被引:36
作者
Chen, MingWei [1 ]
Wu, Bao [1 ]
Zhou, LiChuan [1 ]
Zhu, YinBo [1 ]
Wu, HengAn [1 ]
机构
[1] Univ Sci & Technol China, Dept Modern Mech, CAS Key Lab Mech Behav & Design Mat, CAS Ctr Excellence Complex Syst Mech, Hefei 230027, Peoples R China
基金
中国国家自然科学基金;
关键词
CHEMICAL-VAPOR-DEPOSITION; MECHANICAL-PROPERTIES; GRAPHENE SHEETS; HEAT-TREATMENT; COMPOSITES; MICROSTRUCTURE; PYROCARBONS; ELASTICITY; BEHAVIOR; FRACTURE;
D O I
10.1016/j.carbon.2019.12.096
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pyrolytic carbon (PyC) materials are laminar deposits formed from the high-temperature pyrolytic reaction of volatile hydrocarbons. The outstanding mechanical performance of PyC renders it attractive as interfacial materials in aerospace applications and thermonuclear fusion. But the deposition process of PyC under extreme conditions in particular makes it challenging to achieve large-sized specimens used in further cognition on processing-microstructure-property relationship for PyC materials. Toward recent molecular insights into the initial formation of PyC [Carbon 148 (2019) 307-316], we herein performed molecular dynamics simulations to investigate the micromechanical properties of PyC with the consideration of interlayer crosslinks. Under out-of-plane uniaxial tension, moderate numbers of interlayer crosslinks can significantly enhance the mechanical properties of PyC. Meanwhile, the increase of interlayer crosslinks will improve the energy dissipation through local and multilayer delamination and tearing. Interlayer crosslinks can provide strong junctions between adjacent layers to bear out-of-plane shear deformation effectively. While under in-plane tension or shearing, the mechanical properties of PyC are weakened due to intralayer pore defects introduced by interlayer crosslinks. Moreover, tension-compression asymmetry of PyC is found at nanoscale. Graphene layers with interlayer crosslinks experience kink-like puckering deformation in the in-plane compression, while they only straighten in the in-plane stretching before failure. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:549 / 560
页数:12
相关论文
共 45 条
[1]   Molecular insights into the initial formation of pyrolytic carbon upon carbon fiber surface [J].
Chen, MingWei ;
Zhu, Yinbo ;
Xia, Jun ;
Wu, HengAn .
CARBON, 2019, 148 :307-316
[2]   Bending stiffness and interlayer shear modulus of few-layer graphene [J].
Chen, Xiaoming ;
Yi, Chenglin ;
Ke, Changhong .
APPLIED PHYSICS LETTERS, 2015, 106 (10)
[3]   Texture and nanostructure of pyrocarbon layers deposited on planar substrates in a hot-wall reactor [J].
De Pauw, V ;
Reznik, B ;
Kalhöfer, S ;
Gerthsen, D ;
Hu, ZJ ;
Hüttinger, KJ .
CARBON, 2003, 41 (01) :71-77
[4]   Chemical vapor deposition and infiltration processes of carbon materials [J].
Delhaes, P .
CARBON, 2002, 40 (05) :641-657
[5]   Electromagnetic interference shielding and dielectric properties of SiCf/SiC composites containing pyrolytic carbon interphase [J].
Ding, Donghai ;
Shi, Yimin ;
Wu, Zhihong ;
Zhou, Wancheng ;
Luo, Fa ;
Chen, Jin .
CARBON, 2013, 60 :552-555
[6]   Sharp indentation behavior of carbon/carbon composites and varieties of carbon [J].
Diss, P ;
Lamon, J ;
Carpentier, L ;
Loubet, JL ;
Kapsa, P .
CARBON, 2002, 40 (14) :2567-2579
[7]   Consideration of reaction mechanisms leading to pyrolytic carbon of different textures [J].
Dong, GL ;
Hüttinger, KJ .
CARBON, 2002, 40 (14) :2515-2528
[8]   Nanoscale elasticity of highly anisotropic pyrocarbons [J].
Farbos, B. ;
Da Costa, J. -P. ;
Vignoles, G. L. ;
Leyssale, J. -M. .
CARBON, 2015, 94 :285-294
[9]   Nanoscale structure and texture of highly anisotropic pyrocarbons revisited with transmission electron microscopy, image processing, neutron diffraction and atomistic modeling [J].
Farbos, B. ;
Weisbecker, P. ;
Fischer, H. E. ;
Da Costa, J. -P. ;
Lalanne, M. ;
Chollon, G. ;
Germain, C. ;
Vignoles, G. L. ;
Leyssale, J. -M. .
CARBON, 2014, 80 :472-489
[10]   Elastic constants of high-texture pyrolytic carbon measured by ultrasound phase spectroscopy [J].
Gebert, J. -M. ;
Reznik, B. ;
Piat, R. ;
Viering, B. ;
Weidenmann, K. ;
Wanner, A. ;
Deutschmann, O. .
CARBON, 2010, 48 (12) :3647-3650