How to work with one-dimensional quadratic maps

被引:8
|
作者
Pastor, G [1 ]
Romera, M [1 ]
Alvarez, G [1 ]
Montoya, F [1 ]
机构
[1] CSIC, Inst Fis Aplicada, Madrid 28006, Spain
关键词
D O I
10.1016/S0960-0779(03)00072-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyse some identifiers which can univocally identify hyperbolic components and Misiurewicz points of one-dimensional quadratic maps. After seeing the equivalence among the different identifiers and how to go from one to another, we show which are the best for some specific tasks. Likewise, we present the analytic expressions, some of them shown for the first time in this paper, to calculate these identifiers. Some experimental considerations are taken into account. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:899 / 915
页数:17
相关论文
共 50 条
  • [1] Heredity in one-dimensional quadratic maps
    Romera, M
    Pastor, G
    Alvarez, G
    Montoya, F
    PHYSICAL REVIEW E, 1998, 58 (06): : 7214 - 7218
  • [2] Approach to the ordering of one-dimensional quadratic maps
    Chaos Solitons Fractals, 4 (565):
  • [3] Misiurewicz points in one-dimensional quadratic maps
    Romera, M
    Pastor, G
    Montoya, F
    PHYSICA A, 1996, 232 (1-2): : 517 - 535
  • [4] An approach to the ordering of one-dimensional quadratic maps
    Pastor, G
    Romera, M
    Montoya, F
    CHAOS SOLITONS & FRACTALS, 1996, 7 (04) : 565 - 584
  • [5] Harmonic structure of one-dimensional quadratic maps
    Pastor, G
    Romera, M
    Montoya, F
    PHYSICAL REVIEW E, 1997, 56 (02): : 1476 - 1483
  • [6] On the calculation of Misiurewicz patterns in one-dimensional quadratic maps
    Pastor, G
    Romera, M
    Montoya, F
    PHYSICA A, 1996, 232 (1-2): : 536 - 553
  • [7] Graphic tools to analyse one-dimensional quadratic maps
    Romera, M
    Pastor, G
    Montoya, F
    COMPUTERS & GRAPHICS-UK, 1996, 20 (02): : 333 - 339
  • [8] Misiurewicz point patterns generation in one-dimensional quadratic maps
    Pastor, G
    Romera, M
    Alvarez, G
    Montoya, F
    PHYSICA A, 2001, 292 (1-4): : 207 - 230
  • [10] WINDOWS IN ONE-DIMENSIONAL MAPS
    POST, T
    CAPEL, HW
    PHYSICA A, 1991, 178 (01): : 62 - 100