Positive steady states of the Holling-Tanner prey-predator model with diffusion

被引:102
作者
Peng, R [1 ]
Wang, MX
机构
[1] SE Univ, Dept Math, Nanjing 210018, Peoples R China
[2] Xuzhou Normal Univ, Dept Math, Xuzhou 221116, Peoples R China
关键词
D O I
10.1017/S0308210500003814
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the Holling Tanner prey-predator model with diffusion subject to the homogeneous Neumann boundary condition. We obtain the existence and non-existence of positive non-constant steady states.
引用
收藏
页码:149 / 164
页数:16
相关论文
共 27 条
[1]  
[Anonymous], 1965, MEM ENTOMOL SOC CAN
[2]   The bifurcation structure of the Holling-Tanner model for predator-prey interactions using two-timing [J].
Braza, PA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (03) :889-904
[3]   GLOBAL BIFURCATION IN THE BRUSSELATOR SYSTEM [J].
BROWN, KJ ;
DAVIDSON, FA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (12) :1713-1725
[4]  
Capasso V., 1999, LECT NOTES MATH, V1714
[5]  
COLLINGS JB, 1995, B MATH BIOL, V57, P63, DOI 10.1007/BF02458316
[6]  
Davidson FA, 2000, P ROY SOC EDINB A, V130, P507
[7]   A diffusive predator-prey model in heterogeneous environment [J].
Du, YH ;
Hsu, SB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 203 (02) :331-364
[8]   Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation [J].
Du, YH ;
Lou, Y .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 :321-349
[9]  
Hassell M.P., 1978, DYNAMICS ARTHROPOD P
[10]   GLOBAL STABILITY FOR A CLASS OF PREDATOR-PREY SYSTEMS [J].
HSU, SB ;
HUANG, TW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (03) :763-783