On the moduli space of a quantum Heisenberg manifold

被引:4
作者
Lee, Hyun Ho [1 ]
机构
[1] Univ Ulsan, Dept Math, Ulsan 680749, South Korea
基金
新加坡国家研究基金会;
关键词
The Yang-Mills functional; Moduli space; Quantum Heisenberg manifold; Strong Morita equivalence; ALGEBRAS;
D O I
10.1016/j.jfa.2012.05.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the Yang-Mills problem on a quantum Heisenberg manifold D-mu nu(c) in the setting of the non-commutative differential geometry. This problem was already studied by Kang (2010) in [6] for a specific module Xi over D-mu nu(c), Kang obtained a family of connections which are critical points of the Yang-Mills functional on Xi. But it turned out that they are neither minima nor maxima. In this article we construct a connection del(0) on Xi, and show that it is a minimum of the Yang-Mills functional on the module. Moreover we give a certain family of minima including del(0). and show that the moduli space for Xi is non-trivial. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:941 / 959
页数:19
相关论文
共 14 条
[1]  
Abadie B, 1995, PAC J MATH, V171, P1
[2]  
Abadie B., 1994, ALGEBRAIC METHODS OP, P307
[3]  
[Anonymous], 1994, NONCOMMUTATIVE GEOME
[4]  
Connes A., 1980, C R ACAD SCI PARIS A, V290
[5]  
Connes Alain, 1987, Physics in non-commutative world, V62, P237
[6]   The Yang-Mills functional and Laplace's equation on quantum Heisenberg manifolds [J].
Kang, Sooran .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (01) :307-327
[7]   Noncommutative Families of Instantons [J].
Landi, Giovanni ;
Pagani, Chiara ;
Reina, Cesare ;
van Suijlekom, Walter D. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
[8]  
Lee H., ARXIV09070465MATHOA
[9]  
Rieffel M., 1990, Contemp. Math, V105, P191, DOI DOI 10.1090/CONM/105/1047281
[10]   DEFORMATION QUANTIZATION OF HEISENBERG MANIFOLDS [J].
RIEFFEL, MA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 122 (04) :531-562