Image Reconstruction in Magnetic Resonance Conductivity Tensor Imaging (MRCTI)

被引:8
|
作者
Degirmenci, Evren [1 ]
Eyuboglu, B. Murat [1 ]
机构
[1] Middle E Tech Univ, Dept Elect & Elect Engn, TR-06531 Ankara, Turkey
关键词
Anisotropic conductivity; electrical impedance; imaging; magnetic resonance; reconstruction; tensor; tomography; ELECTRICAL-IMPEDANCE TOMOGRAPHY; CURRENT-DENSITY; MR-EIT; MREIT; ALGORITHM; SIMULATION;
D O I
10.1109/TMI.2011.2171192
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Almost all magnetic resonance electrical impedance tomography (MREIT) reconstruction algorithms proposed to date assume isotropic conductivity in order to simplify the image reconstruction. However, it is well known that most of biological tissues have anisotropic conductivity values. In this study, four novel anisotropic conductivity reconstruction algorithms are proposed to reconstruct high resolution conductivity tensor images. Performances of these four algorithms and a previously proposed algorithm are evaluated in several aspects and compared.
引用
收藏
页码:525 / 532
页数:8
相关论文
共 50 条
  • [41] Image Reconstruction Based on the Anatomical Information for Magnetic Resonance Electrical Impedance Tomography
    Hao, Liling
    Xu, Lisheng
    Yang, Benqiang
    Li, Gang
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2016, 31 (06): : 700 - 705
  • [42] Diffusion Tensor Magnetic Resonance Imaging in Chronic Spinal Cord Compression
    Zheng, Weipeng
    Ruan, Xiuhang
    Wei, Xinhua
    Xu, Fangtian
    Huang, Yuanping
    Wang, Ning
    Chen, Haoyi
    Liang, YingJie
    Xiao, Wende
    Jiang, Xin
    Wen, Shifeng
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (147):
  • [43] Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging
    Woo, Eung Je
    Seo, Jin Keun
    PHYSIOLOGICAL MEASUREMENT, 2008, 29 (10) : R1 - R26
  • [44] On the formulation of the image reconstruction problem in magnetic particle imaging
    Gruettner, Mandy
    Knopp, Tobias
    Franke, Jochen
    Heidenreich, Michael
    Rahmer, Juergen
    Halkola, Aleksi
    Kaethner, Christian
    Borgert, Joern
    Buzug, Thorsten M.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2013, 58 (06): : 583 - 591
  • [45] Self-Supervised Motion-Corrected Image Reconstruction Network for 4D Magnetic Resonance Imaging of the Body Trunk
    Kuestner, Thomas
    Pan, Jiazhen
    Gilliam, Christopher
    Qi, Haikun
    Cruz, Gastao
    Hammernik, Kerstin
    Blu, Thierry
    Rueckert, Daniel
    Botnar, Rene
    Prieto, Claudia
    Gatidis, Sergios
    APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING, 2022, 11 (01)
  • [46] Imaging of atherosclerosis: magnetic resonance imaging
    Corti, Roberto
    Fuster, Valentin
    EUROPEAN HEART JOURNAL, 2011, 32 (14) : 1709 - U149
  • [47] Magnetoacoustic Tomography With Magnetic Induction: Bioimepedance Reconstruction Through Vector Source Imaging
    Mariappan, Leo
    He, Bin
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (03) : 619 - 627
  • [48] Comparison of Pulse Sequences of Magnetic Resonance Imaging for Optimization of Timing and Image Quality
    Amin N.
    Yousaf M.
    Javid M.A.
    Farooq A.
    Iranian Journal of Medical Physics, 2020, 17 (06) : 350 - 358
  • [49] Physics-based reconstruction methods for magnetic resonance imaging
    Wang, Xiaoqing
    Tan, Zhengguo
    Scholand, Nick
    Roeloffs, Volkert
    Uecker, Martin
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2200):
  • [50] A convex optimisation approach to parallel magnetic resonance imaging reconstruction
    Baqee, Ifat Al
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2023, 41 (02) : 126 - 144