Hydrogen production from biomass via an iron oxide thermochemical cycle

被引:1
作者
Self, S. J. [1 ]
Reddy, B. V. [1 ]
Rosen, M. A. [1 ]
机构
[1] Univ Ontario Inst Technol, Fac Engn & Appl Sci, Oshawa, ON L1H 7K4, Canada
来源
BIOFUELS-UK | 2017年 / 8卷 / 06期
基金
加拿大自然科学与工程研究理事会;
关键词
Hydrogen; biomass; chemical looping combustion; iron oxide; hydrogen energy; carbon dioxide separation; CHEMICAL-LOOPING COMBUSTION; SOLID FUELS; POWER-GENERATION; OXYGEN CARRIER; COAL; DESIGN; CAPTURE; SYSTEMS; REDUCTION; HEMATITE;
D O I
10.1080/17597269.2016.1221295
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The performance of hydrogen production using various types of biomass in an iron oxide-based thermochemical energy conversion system is assessed and compared. Since biomass, although abundant in supply, contains carbon, a mechanism for carbon capture and sequester could be used if greenhouse gas emissions are to be avoided (going beyond the neutrality of biomass in this regard). This is facilitated in the iron oxide based system because it enables separate streams for hydrogen and carbon dioxide. Hydrogen production trends are compared for various biomass inputs. The effects on hydrogen production are investigated for fuel moisture content. Simulation techniques are used. It is observed that a 10% moisture content in the source fuel eliminates the possibility of hydrogen production from low-grade biomass within the available energy region.
引用
收藏
页码:709 / 716
页数:8
相关论文
共 36 条
[1]   Progress in Chemical-Looping Combustion and Reforming technologies [J].
Adanez, Juan ;
Abad, Alberto ;
Garcia-Labiano, Francisco ;
Gayan, Pilar ;
de Diego, Luis F. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2012, 38 (02) :215-282
[2]   The fossil trace of CO2 emissions in multi-fuel energy systems [J].
Agudelo, Andres ;
Valero, Antonio ;
Uson, Sergio .
ENERGY, 2013, 58 :236-246
[3]  
[Anonymous], 2008, WORLD EN OUTL 2008
[4]   Barriers of commercial power generation using biomass gasification gas: A review [J].
Asadullah, Mohammad .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 29 :201-215
[5]  
Aspen Technology Inc, 2006, ASPEN PLUS 12 1 US G
[6]   Viability of fuel switching of a gas-fired power plant operating in chemical looping combustion mode [J].
Basavaraja, R. J. ;
Jayanti, S. .
ENERGY, 2015, 81 :213-221
[7]  
BP p.I.c, 2003, BP STAT REV WORLD EN
[8]   Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion [J].
Cho, P ;
Mattisson, T ;
Lyngfelt, A .
FUEL, 2004, 83 (09) :1215-1225
[9]   Clean hydrogen production and electricity from coal via chemical looping: Identifying a suitable operating regime [J].
Cleeton, J. P. E. ;
Bohn, C. D. ;
Mueller, C. R. ;
Dennis, J. S. ;
Scott, S. A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (01) :1-12
[10]   Biomass direct chemical looping for hydrogen and power co-production: Process configuration, simulation, thermal integration and techno-economic assessment [J].
Cormos, Calin-Cristian .
FUEL PROCESSING TECHNOLOGY, 2015, 137 :16-23