Quantum diffusion of the random Schrodinger evolution in the scaling limit

被引:46
作者
Erdos, Laszlo [1 ]
Salmhofer, Manfred [2 ]
Yau, Horng-Tzer [3 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
[2] Univ Leipzig, Max Planck Inst Mat & Theoret Phys, D-04103 Leipzig, Germany
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s11511-008-0027-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:211 / 277
页数:67
相关论文
共 52 条
[1]   Absolutely continuous spectra of quantum tree graphs with weak disorder [J].
Aizenman, M ;
Sims, R ;
Warzel, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (02) :371-389
[2]   LOCALIZATION AT LARGE DISORDER AND AT EXTREME ENERGIES - AN ELEMENTARY DERIVATION [J].
AIZENMAN, M ;
MOLCHANOV, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (02) :245-278
[3]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[4]   ON THE BOLTZMANN-EQUATION FOR THE LORENTZ GAS [J].
BOLDRIGHINI, C ;
BUNIMOVICH, LA ;
SINAI, YG .
JOURNAL OF STATISTICAL PHYSICS, 1983, 32 (03) :477-501
[5]  
Bourgain J, 2003, LECT NOTES MATH, V1807, P70
[6]  
Brown R., 1829, PHILOS MAG, V6, P161, DOI 10.1080/14786442908675115
[7]  
Brown R., 1828, Philosophical Magazine Series, V4, P161, DOI [10.1080/14786442808674769, DOI 10.1080/14786442808674769]
[8]   GRAD PHI-PERTURBATIONS OF MASSLESS GAUSSIAN FIELDS [J].
BRYDGES, D ;
YAU, HT .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 129 (02) :351-392
[9]   THE SHORT-DISTANCE BEHAVIOR OF (PHI(4))(3) [J].
BRYDGES, D ;
DIMOCK, J ;
HURD, TR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (01) :143-186
[10]   MARKOV PARTITIONS FOR DISPERSED BILLIARDS [J].
BUNIMOVICH, LA ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 78 (02) :247-280