Stabilizing electrode-electrolyte interfaces to realize high-voltage Li||LiCoO2 batteries by a sulfonamide-based electrolyte

被引:128
作者
Xue, Weijiang [1 ]
Gao, Rui [1 ]
Shi, Zhe [1 ,2 ]
Xiao, Xianghui [3 ]
Zhang, Wenxu [4 ]
Zhang, Yirui [5 ]
Zhu, Yun Guang [6 ]
Waluyo, Iradwikanari [3 ]
Li, Yao [7 ]
Hill, Megan R. [4 ]
Zhu, Zhi [1 ]
Li, Sa [8 ]
Kuznetsov, Oleg [9 ]
Zhang, Yiman [9 ]
Lee, Wah-Keat [3 ]
Hunt, Adrian [3 ]
Harutyunyan, Avetik [9 ]
Shao-Horn, Yang [2 ,5 ,6 ]
Johnson, Jeremiah A. [4 ]
Li, Ju [1 ,2 ]
机构
[1] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] Brookhaven Natl Lab, Natl Synchrotron Light Source II, Upton, NY 11973 USA
[4] MIT, Dept Chem, Cambridge, MA 02139 USA
[5] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[6] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[7] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[8] Tongji Univ, Inst New Energy Vehicles, Sch Mat Sci & Engn, Shanghai 201804, Peoples R China
[9] Honda Res Inst USA Inc, San Jose, CA 95134 USA
基金
美国国家科学基金会;
关键词
LITHIUM COBALT OXIDE; LONG CYCLE-LIFE; ION BATTERIES; 4.5; V; LICOO2; CARBONATE; OXIDATION; CATHODE;
D O I
10.1039/d1ee01265g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-voltage lithium-metal batteries (LMBs) with LiCoO2 (LCO) as the cathode have high volumetric and gravimetric energy densities. However, it remains a challenge for stable cycling of LCO >4.5 V-Li. Here we demonstrate that a rationally designed sulfonamide-based electrolyte can greatly improve the cycling stability at high voltages up to 4.7 V-Li by stabilizing the electrode-electrolyte interfaces (EEIs) on both the Li-metal anode (LMA) and high-voltage LCO cathode. With the sulfonamide-based electrolyte, commercial LCO cathodes retain 89% and 85% of their capacities after 200 and 100 cycles under high charging voltages of 4.55 V-Li and 4.6 V-Li, respectively, significantly outperforming traditional carbonate-based electrolytes. The surface degradation, impedance growth, and detrimental side reactions in terms of gas evolution and Co dissolution are well suppressed. Our work demonstrates a promising strategy for designing new electrolytes to realize high-energy Li||LCO batteries.
引用
收藏
页码:6030 / 6040
页数:11
相关论文
共 59 条
[1]  
[Anonymous], 2017, ADV ENERGY MATER
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization [J].
Cao, Xia ;
Ren, Xiaodi ;
Zou, Lianfeng ;
Engelhard, Mark H. ;
Huang, William ;
Wang, Hansen ;
Matthews, Bethany E. ;
Lee, Hongkyung ;
Niu, Chaojiang ;
Arey, Bruce W. ;
Cui, Yi ;
Wang, Chongmin ;
Xiao, Jie ;
Liu, Jun ;
Xu, Wu ;
Zhang, Ji-Guang .
NATURE ENERGY, 2019, 4 (09) :796-805
[4]   Improving the capacity retention of LiCoO2 cycled to 4.5 V by heat-treatment [J].
Chen, ZH ;
Dahn, JR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (01) :A11-A14
[5]   A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery [J].
Dong, Tiantian ;
Zhang, Jianjun ;
Xu, Gaojie ;
Chai, Jingchao ;
Du, Huiping ;
Wang, Longlong ;
Wen, Huijie ;
Zang, Xiao ;
Du, Aobing ;
Jia, Qingming ;
Zhou, Xinhong ;
Cui, Guanglei .
Energy and Environmental Science, 2018, 11 (05) :1197-1203
[6]   Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries [J].
Fan, Xiulin ;
Chen, Long ;
Borodin, Oleg ;
Ji, Xiao ;
Chen, Ji ;
Hou, Singyuk ;
Deng, Tao ;
Zheng, Jing ;
Yang, Chongyin ;
Liou, Sz-Chian ;
Amine, Khalil ;
Xu, Kang ;
Wang, Chunsheng .
NATURE NANOTECHNOLOGY, 2018, 13 (08) :715-+
[7]   Molecular Design of Stable Sulfamide- and Sulfonamide-Based Electrolytes for Aprotic Li-O2 Batteries [J].
Feng, Shuting ;
Huang, Mingjun ;
Lamb, Jessica R. ;
Zhang, Wenxu ;
Tatara, Ryoichi ;
Zhang, Yirui ;
Zhu, Yun Guang ;
Perkinson, Collin F. ;
Johnson, Jeremiah A. ;
Shao-Horn, Yang .
CHEM, 2019, 5 (10) :2630-2641
[8]   Electrode-Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights [J].
Gauthier, Magali ;
Carney, Thomas J. ;
Grimaud, Alexis ;
Giordano, Livia ;
Pour, Nir ;
Chang, Hao-Hsun ;
Fenning, David P. ;
Lux, Simon F. ;
Paschos, Odysseas ;
Bauer, Christoph ;
Magia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Shao-Horn, Yang .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (22) :4653-4672
[9]   Ligand-Dependent Energetics for Dehydrogenation: Implications in Li-Ion Battery Electrolyte Stability and Selective Oxidation Catalysis of Hydrogen-Containing Molecules [J].
Giordano, Livia ;
Ostergaard, Thomas M. ;
Muy, Sokseiha ;
Yu, Yang ;
Charles, Nenian ;
Kim, Soo ;
Zhang, Yirui ;
Maglia, Filippo ;
Jung, Roland ;
Lund, Isaac ;
Rossmeisl, Jan ;
Shao-Horn, Yang .
CHEMISTRY OF MATERIALS, 2019, 31 (15) :5464-5474
[10]   Chemical Reactivity Descriptor for the Oxide-Electrolyte Interface in Li-Ion Batteries [J].
Giordano, Livia ;
Karayaylali, Pinar ;
Yu, Yang ;
Katayama, Yu ;
Maglia, Filippo ;
Lux, Simon ;
Shao-Horn, Yang .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (16) :3881-3887