Biospectroscopy to metabolically profile biomolecular structure: a multistage approach linking computational analysis with biomarkers

被引:159
作者
Kelly, Jemma G. [1 ]
Trevisan, Julio [1 ,2 ]
Scott, Andrew D. [3 ]
Carmichael, Paul L. [3 ]
Pollock, Hubert M. [1 ]
Martin-Hirsch, Pierre L. [4 ]
Martin, Francis L.
机构
[1] Univ Lancaster, Lancaster Environm Ctr, Ctr Biophoton, Lancaster, England
[2] Univ Lancaster, Infolab21, Sch Comp & Commun, Lancaster, England
[3] Unilever Colworth Sci Pk, Safety & Environm Assurance Ctr, Bedford, England
[4] Lancashire Teaching Hosp NHS Trust, Preston, Lancs, England
关键词
biomarkers; biospectroscopy; infrared spectroscopy; multivariate analysis; principal component analysis; screening; diagnosis; machine learning; FT-IR; INFRARED-SPECTROSCOPY; RAMAN-SPECTROSCOPY; DISCRIMINANT-ANALYSIS; COMPONENT ANALYSIS; CELLS; MICROSPECTROSCOPY; CLASSIFICATION; IDENTIFICATION; RECOGNITION;
D O I
10.1021/pr101067u
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Biospectroscopy is employed to derive absorbance spectra representative of biomolecules present in biological samples. The mid-infrared region (lambda = 2.5 mu m -25 mu m) is absorbed to give a biochemical-cell fingerprint ((v) over tilde = 1800-900 cm(-1)). Cellular material produces complex spectra due to the variety of chemical bonds present. The complexity and size of spectral data sets warrant multivariate analysis for data reduction, interpretation, and classification. Various multivariate analyses are available including principal component analysis (PCA), partial least-squares (PLS), linear discriminant analysis (LDA), and evolving fuzzy rule-based classifier (eClass). Interpretation of both visual and numerical results facilitates biomarker identification, cell-type discrimination, and predictive and mechanistic understanding of cellular behavior. Biospectroscopy is a high-throughput nondestructive technology. A comparison of biomarkers/mechanistic knowledge determined from conventional approaches to biospectroscopy coupled with multivariate analysis often provides complementary answers and a novel approach for diagnosis of disease and cell biology.
引用
收藏
页码:1437 / 1448
页数:12
相关论文
共 76 条
[1]  
ANGELOV P, 2008, Patent No. 2008053161
[2]   Evolving Fuzzy-Rule-Based Classifiers From Data Streams [J].
Angelov, Plamen P. ;
Zhou, Xiaowei .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2008, 16 (06) :1462-1475
[3]   An approach to Online identification of Takagi-Suigeno fuzzy models [J].
Angelov, PP ;
Filev, DP .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (01) :484-498
[4]  
[Anonymous], 2000, Pattern Classification
[5]  
[Anonymous], 2005, INFRARED SPECTROSCOP, DOI DOI 10.1002/0470011149
[6]   Raman spectroscopy in chemical bioanalysis [J].
Baena, JR ;
Lendl, B .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2004, 8 (05) :534-539
[7]   RMieS-EMSC correction for infrared spectra of biological cells: Extension using full Mie theory and GPU computing [J].
Bassan, Paul ;
Kohler, Achim ;
Martens, Harald ;
Lee, Joe ;
Jackson, Edward ;
Lockyer, Nicholas ;
Dumas, Paul ;
Brown, Michael ;
Clarke, Noel ;
Gardner, Peter .
JOURNAL OF BIOPHOTONICS, 2010, 3 (8-9) :609-620
[8]   Resonant Mie scattering in infrared spectroscopy of biological materials - understanding the 'dispersion artefact' [J].
Bassan, Paul ;
Byrne, Hugh J. ;
Bonnier, Franck ;
Lee, Joe ;
Dumas, Paul ;
Gardner, Peter .
ANALYST, 2009, 134 (08) :1586-1593
[9]   Analytical applications of Fourier transform-infrared (FT-IR) spectroscopy in microbiology and prion research [J].
Beekes, Michael ;
Lasch, Peter ;
Naumann, Dieter .
VETERINARY MICROBIOLOGY, 2007, 123 (04) :305-319
[10]  
Bentley AJ, 2007, MOL VIS, V13, P237