Comprehensive electrocardiographic diagnosis based on deep learning

被引:145
作者
Lih, Oh Shu [1 ]
Jahmunah, V. [1 ]
San, Tan Ru [2 ]
Ciaccio, Edward J. [3 ]
Yamakawa, Toshitaka [4 ]
Tanabe, Masayuki [4 ,7 ]
Kobayashi, Makiko [4 ]
Faust, Oliver [5 ]
Acharya, U. Rajendra [1 ,6 ,7 ]
机构
[1] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore 599489, Singapore
[2] Natl Heart Ctr, Singapore, Singapore
[3] Columbia Univ, Dept Med, Cardiol, New York, NY 10027 USA
[4] Kumamoto Univ, Dept Comp Sci & Elect Engn, Kumamoto, Japan
[5] Sheffield Hallam Univ, Dept Engn & Math, Sheffield, S Yorkshire, England
[6] Asia Univ, Dept Bioinformat & Med Engn, Taichung, Taiwan
[7] Kumamoto Univ, IROAST, Kumamoto, Japan
关键词
Cardiovascular diseases; Coronary artery disease; Myocardial infarction; Congestive heart failure; beep learning; 10-fold validation; Convolutional neural network; Long short-term memory; CORONARY-ARTERY-DISEASE; RECURRENT NEURAL-NETWORK; MYOCARDIAL-INFARCTION; ECG SIGNALS; AUTOMATED DETECTION; HEART-DISEASE; CLASSIFICATION; IDENTIFICATION;
D O I
10.1016/j.artmed.2019.101789
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cardiovascular disease (CVD) is the leading cause of death worldwide, and coronary artery disease (CAD) is a major contributor. Early-stage CAD can progress if undiagnosed and left untreated, leading to myocardial infarction (MI) that may induce irreversible heart muscle damage, resulting in heart chamber remodeling and eventual congestive heart failure (CHF). Electrocardiography (ECG) signals can be useful to detect established MI, and may also be helpful for early diagnosis of CAD. For the latter especially, the ECG perturbations can be subtle and potentially misclassified during manual interpretation and/or when analyzed by traditional algorithms found in ECG instrumentation. For automated diagnostic systems (ADS), deep learning techniques are favored over conventional machine learning techniques, due to the automatic feature extraction and selection processes involved. This paper highlights various deep learning algorithms exploited for the classification of ECG signals into CAD, MI, and CHF conditions. The Convolutional Neural Network (CNN), followed by combined CNN and Long Short-Term Memory (LSTM) models, appear to be the most useful architectures for classification. A 16-layer LSTM model was developed in our study and validated using 10-fold cross-validation. A classification accuracy of 98.5% was achieved. Our proposed model has the potential to be a useful diagnostic tool in hospitals for the classification of abnormal ECG signals.
引用
收藏
页数:8
相关论文
共 61 条
[1]   Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad ;
Tan, Ru San .
APPLIED INTELLIGENCE, 2019, 49 (01) :16-27
[2]   Automated EEG-based screening of depression using deep convolutional neural network [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adeli, Hojjat ;
Subha, D. P. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 161 :103-113
[3]   Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Oh, Shu Lih ;
Raghavendra, U. ;
Tan, Jen Hong ;
Adam, Muhammad ;
Gertych, Arkadiusz ;
Hagiwara, Yuki .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 79 :952-959
[4]   Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad .
INFORMATION SCIENCES, 2017, 415 :190-198
[5]   Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Lih, Oh Shu ;
Adam, Muhammad ;
Tan, Jen Hong ;
Chua, Chua Kuang .
KNOWLEDGE-BASED SYSTEMS, 2017, 132 :62-71
[6]   Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Sudarshan, Vidya K. ;
Oh, Shu Lih ;
Adam, Muhammad ;
Tan, Jen Hong ;
Koo, Jie Hui ;
Jain, Arihant ;
Lim, Choo Min ;
Chua, Kuang Chua .
KNOWLEDGE-BASED SYSTEMS, 2017, 132 :156-166
[7]   Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Adam, Muhammad ;
Lih, Oh Shu ;
Sudarshan, Vidya K. ;
Hong, Tan Jen ;
Koh, Joel E. W. ;
Hagiwara, Yuki ;
Chua, Chua K. ;
Poo, Chua Kok ;
San, Tan Ru .
INFORMATION SCIENCES, 2017, 377 :17-29
[8]   Application of higher-order spectra for the characterization of Coronary artery disease using electrocardiogram signals [J].
Acharya, U. Rajendra ;
Sudarshan, Vidya K. ;
Koh, Joel E. W. ;
Martis, Roshan Joy ;
Tan, Jen Hong ;
Oh, Shu Lih ;
Muhammad, Adam ;
Hagiwara, Yuki ;
Mookiah, Muthu Rama Krishanan ;
Chua, Kok Poo ;
Chua, Chua K. ;
Tan, Ru San .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 31 :31-43
[9]   Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Sudarshan, Vidya K. ;
Oh, Shu Lih ;
Adam, Muhammad ;
Koh, Joel E. W. ;
Tan, Jen Hong ;
Ghista, Dhanjoo N. ;
Martis, Roshan Joy ;
Chua, Chua K. ;
Poo, Chua Kok ;
Tan, Ru San .
KNOWLEDGE-BASED SYSTEMS, 2016, 99 :146-156
[10]   Entropies for automated detection of coronary artery disease using ECG signals: A review [J].
Acharya, Udyavara Rajendra ;
Hagiwara, Yuki ;
Koh, Joel En Wei ;
Oh, Shu Lih ;
Tan, Jen Hong ;
Adam, Muhammad ;
Tan, Ru San .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2018, 38 (02) :373-384