Reconstruction of domino tiling from its two orthogonal projections

被引:11
作者
Picouleau, C [1 ]
机构
[1] Conservatoire Natl Arts & Metiers, Lab CEDRIC, F-75003 Paris, France
关键词
domino tiling; reconstruction problem; polynomial-time algorithm; NP-completeness;
D O I
10.1016/S0304-3975(99)00312-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We are interested in the reconstruction of a domino tiling of a rectangle from its two orthogonal projections. We give polynomial algorithms for some subproblems when all the dominoes are of the same type and prove NP-completeness results when there are three types of dominoes. When two types of dominoes are allowed. we give a polynomial-time transformation from a well-known open problem. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:437 / 447
页数:11
相关论文
共 11 条
  • [1] Ahuja R.K., 1993, NETWORK FLOWS THEORY
  • [2] [Anonymous], 1991, COMPUTERS INTRACTABI
  • [3] Reconstructing convex polyominoes from horizontal and vertical projections
    Barcucci, E
    DelLungo, A
    Nivat, M
    Pinzani, R
    [J]. THEORETICAL COMPUTER SCIENCE, 1996, 155 (02) : 321 - 347
  • [4] BARCUCCI E, 1995, 1595 U FIR DIP SIST
  • [5] Berge C., 1983, Graphes
  • [6] CHROBAK M, 1998, 98012 ICSI
  • [7] The number of convex polyominoes reconstructible from their orthogonal projections
    DelLungo, A
    Nivat, M
    Pinzani, R
    [J]. DISCRETE MATHEMATICS, 1996, 157 (1-3) : 65 - 78
  • [8] POLYOMINOES DEFINED BY 2 VECTORS
    DELLUNGO, A
    [J]. THEORETICAL COMPUTER SCIENCE, 1994, 127 (01) : 187 - 198
  • [9] GARDNER H, 1999, IN PRESS THEORET COM
  • [10] Discrete tomography: Determination of finite sets by X-rays
    Gardner, RJ
    Gritzmann, P
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (06) : 2271 - 2295