Node-based differential network analysis in genomics

被引:9
作者
Zhang, Xiao-Fei [1 ,2 ,4 ]
Ou-Yang, Le [3 ]
Yan, Hong [4 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan, Hubei, Peoples R China
[2] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan, Hubei, Peoples R China
[3] Shenzhen Univ, Coll Informat Engn, Shenzhen 518060, Peoples R China
[4] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Differential network analysis; Gaussian graphical model; Gene dependency network; Hub nodes; Graphical lasso; INVERSE COVARIANCE ESTIMATION; OVARIAN-CANCER; THERAPEUTIC TARGET; GENE; MUTATIONS; PATHWAY; PDK1;
D O I
10.1016/j.compbiolchem.2017.03.010
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gene dependency networks often undergo changes in response to different conditions. Understanding how these networks change across two conditions is an important task in genomics research. Most previous differential network analysis approaches assume that the difference between two condition specific networks is driven by individual edges. Thus, they may fail in detecting key players which might represent important genes whose mutations drive the change of network. In this work, we develop a node-based differential network analysis (N-DNA) model to directly estimate the differential network that is driven by certain hub nodes. We model each condition-specific gene network as a precision matrix and the differential network as the difference between two precision matrices. Then we formulate a convex optimization problem to infer the differential network by combing a D-trace loss function and a row-column overlap norm penalty function. Simulation studies demonstrate that N-DNA provides more accurate estimate of the differential network than previous competing approaches. We apply N-DNA to ovarian cancer and breast cancer gene expression data. The model rediscovers known cancer-related genes and contains interesting predictions. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:194 / 201
页数:8
相关论文
共 56 条
  • [1] Notch Signaling Pathway as a Therapeutic Target in Breast Cancer
    Al-Hussaini, Hamed
    Subramanyam, Deepa
    Reedijk, Michael
    Sridhar, Srikala S.
    [J]. MOLECULAR CANCER THERAPEUTICS, 2011, 10 (01) : 9 - 15
  • [2] [Anonymous], SCI REP UK
  • [3] [Anonymous], 2010, 100920105055 ARXIV
  • [4] [Anonymous], 2010, ARXIV
  • [5] Network medicine: a network-based approach to human disease
    Barabasi, Albert-Laszlo
    Gulbahce, Natali
    Loscalzo, Joseph
    [J]. NATURE REVIEWS GENETICS, 2011, 12 (01) : 56 - 68
  • [6] Integrated genomic analyses of ovarian carcinoma
    Bell, D.
    Berchuck, A.
    Birrer, M.
    Chien, J.
    Cramer, D. W.
    Dao, F.
    Dhir, R.
    DiSaia, P.
    Gabra, H.
    Glenn, P.
    Godwin, A. K.
    Gross, J.
    Hartmann, L.
    Huang, M.
    Huntsman, D. G.
    Iacocca, M.
    Imielinski, M.
    Kalloger, S.
    Karlan, B. Y.
    Levine, D. A.
    Mills, G. B.
    Morrison, C.
    Mutch, D.
    Olvera, N.
    Orsulic, S.
    Park, K.
    Petrelli, N.
    Rabeno, B.
    Rader, J. S.
    Sikic, B. I.
    Smith-McCune, K.
    Sood, A. K.
    Bowtell, D.
    Penny, R.
    Testa, J. R.
    Chang, K.
    Dinh, H. H.
    Drummond, J. A.
    Fowler, G.
    Gunaratne, P.
    Hawes, A. C.
    Kovar, C. L.
    Lewis, L. R.
    Morgan, M. B.
    Newsham, I. F.
    Santibanez, J.
    Reid, J. G.
    Trevino, L. R.
    Wu, Y. -Q.
    Wang, M.
    [J]. NATURE, 2011, 474 (7353) : 609 - 615
  • [7] Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer
    Bowtell, David D.
    Boehm, Steffen
    Ahmed, Ahmed A.
    Aspuria, Paul-Joseph
    Bast, Robert C., Jr.
    Beral, Valerie
    Berek, Jonathan S.
    Birrer, Michael J.
    Blagden, Sarah
    Bookman, Michael A.
    Brenton, James D.
    Chiappinelli, Katherine B.
    Martins, Filipe Correia
    Coukos, George
    Drapkin, Ronny
    Edmondson, Richard
    Fotopoulou, Christina
    Gabra, Hani
    Galon, Jerome
    Gourley, Charlie
    Heong, Valerie
    Huntsman, David G.
    Iwanicki, Marcin
    Karlan, Beth Y.
    Kaye, Allyson
    Lengyel, Ernst
    Levine, Douglas A.
    Lu, Karen H.
    McNeish, Iain A.
    Menon, Usha
    Narod, Steven A.
    Nelson, Brad H.
    Nephew, Kenneth P.
    Pharoah, Paul
    Powell, Daniel J., Jr.
    Ramos, Pilar
    Romero, Iris L.
    Scott, Clare L.
    Sood, Anil K.
    Stronach, Euan A.
    Balkwill, Frances R.
    [J]. NATURE REVIEWS CANCER, 2015, 15 (11) : 668 - 679
  • [8] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122
  • [9] Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway
    Burris, Howard A., III
    [J]. CANCER CHEMOTHERAPY AND PHARMACOLOGY, 2013, 71 (04) : 829 - 842
  • [10] Cox D., 1996, Multivariate Dependencies: Models, Analysis and Interpretation, V67