Role of nonlinear dissipation in the suppression of chaotic escape from a potential well

被引:12
作者
Chacón, R
Balibrea, F
López, MA
机构
[1] Univ Extremadura, Dept Elect & Ingn Electromed, E-06071 Badajoz, Spain
[2] Univ Murcia, Fac Matemat, Dept Matemat, E-30100 Murcia, Spain
[3] Univ Castilla La Mancha, Escuela Univ Politecn, Dept Matemat, E-16071 Cuenca, Spain
关键词
D O I
10.1016/S0375-9601(00)00675-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The inhibition of chaotic escape from a universal escape oscillator due to a periodic parametric perturbation of the quadratic potential term is studied theoretically by means of Poincare-Melnikov-Arnold analysis, and the predictions are tested against numerical simulations based on a high-resolution grid of initial conditions. It is shown that chaotic escape suppression is impossible under period-1 and period-2 parametric perturbations. The role of a nonlinear damping: term, proportional to the nth power of the velocity, on the inhibition scenario is also discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:38 / 46
页数:9
相关论文
共 19 条
[1]  
Arnold VI, 1964, SOV MATH DOKL, V5, P581
[2]   General results on chaos suppression for biharmonically driven dissipative systems [J].
Chacón, R .
PHYSICS LETTERS A, 1999, 257 (5-6) :293-300
[3]   GLOBAL BIFURCATION AND CHAOS FROM AUTOMATIC GAIN-CONTROL LOOPS [J].
CHANG, FJ ;
TWU, SH ;
CHANG, S .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1993, 40 (06) :403-411
[4]  
Davis PJ, 1972, HDB MATH FUNCTIONS
[5]  
Guckenheimer J, 2013, APPL MATH SCI
[6]   FRACTAL BASIN BOUNDARIES [J].
MCDONALD, SW ;
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1985, 17 (02) :125-153
[7]  
Melnikov VK., 1963, Trans. Moscow Math. Soc, V12, P1
[8]   FRACTAL BASIN BOUNDARIES AND HOMOCLINIC ORBITS FOR PERIODIC MOTION IN A 2-WELL POTENTIAL [J].
MOON, FC ;
LI, GX .
PHYSICAL REVIEW LETTERS, 1985, 55 (14) :1439-1442
[9]  
Nayfeh A., 1979, NONLINEAR OSCILLATIO
[10]  
Poincare H., 1892, METHODES NOUVELLES M, V1