Combinatorics of 1-particle irreducible n-point functions via coalgebra in quantum field theory

被引:0
作者
Mestre, Angela [1 ,2 ]
机构
[1] Univ Paris 06, CNRS, UMR 7590, Inst Mineral & Phys Milieux Condenses, F-75015 Paris, France
[2] Univ Paris 07, IPGP, F-75015 Paris, France
关键词
HOPF ALGEBRA;
D O I
10.1063/1.3449321
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a coalgebra structure on 1-vertex irreducible graphs which is that of a cocommutative coassociative graded connected coalgebra. We generalize the coproduct to the algebraic representation of graphs so as to express a bare 1-particle irreducible n-point function in terms of its loop order contributions. The algebraic representation is so that graphs can be evaluated as Feynman graphs. (C) 2010 American Institute of Physics. [doi :10.1063/1.3449321]
引用
收藏
页数:14
相关论文
共 16 条
[1]  
[Anonymous], 1995, COMMUTATIVE ALGEBRA, DOI DOI 10.1007/978-1-4612-5350-1
[2]  
Atallah M.J., 1998, Algorithms and Theory of Computation Handbook
[3]   Quantum field theory and Hopf algebra cohomology [J].
Brouder, C ;
Fauser, B ;
Frabetti, A ;
Oeckl, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (22) :5895-5927
[4]  
BROUDER C, ARXIVHEPTH0208118
[5]  
BROUDER C, 2004, MATH PHYS RES LEADIN, P63
[6]   Quantum field theory meets Hopf algebra [J].
Brouder, Christian .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (12) :1664-1690
[7]  
CUNTZ J, 2007, TOPOLOGIVAL BIVARIAN, V36
[8]   103 GRAPHS THAT ARE IRREDUCIBLE FOR THE PROJECTIVE PLANE [J].
GLOVER, HH ;
HUNEKE, JP ;
WANG, CS .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 27 (03) :332-370
[9]  
Itzykson C., 2005, Quantum Field Theory
[10]  
Kassel C., 1995, QUANTUM GROUPS