Efficient Data-Driven Uncertainty Propagation in Power System Dynamics Using Low-Rank Randomized Koopman Operator Approximation

被引:0
|
作者
Matavalam, Amarsagar Reddy Ramapuram [1 ]
Maldonado, Daniel Adrian [2 ]
Ajjarapu, Venkataramana [1 ]
机构
[1] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
[2] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60429 USA
来源
2022 17TH INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS) | 2022年
基金
美国国家科学基金会;
关键词
Uncertainty Propagation; Koopman Operator; Perron-Frobenius Operator; Power System Dynamics; Moment Propagation;
D O I
10.1109/PMAPS53380.2022.9810624
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper we propose an efficient model-free data-driven algorithm for propagating uncertainty through nonlinear power system dynamics. We characterize the uncertainty in terms of the moments of the probability distribution of the dynamic states. The proposed approach relies on efficiently learning a linear representation of the power system by using the Koopman operator for propagating the moments. We use a randomized singular value decomposition to accelerate the computation of the Koopman operator. The proposed approach is implemented in Julia for propagating initial condition uncertainties for multiple power systems. The results demonstrate that the speedup of the proposed approach compared with conventional approaches increases as the system size increases and reaches an acceleration of 6x for the New England test system with comparable accuracy.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Nonlinear System Identification of Tremors Dynamics: A Data-driven Approximation Using Koopman Operator Theory
    Xue, Xiangming
    Iyer, Ashwin
    Roque, Daniel
    Sharma, Nitin
    2023 11TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, NER, 2023,
  • [2] Optimal Control of Quadrotor Attitude System Using Data-driven Approximation of Koopman Operator
    Zheng, Ketong
    Huang, Peng
    Fettweis, Gerhard P.
    IFAC PAPERSONLINE, 2023, 56 (02): : 834 - 840
  • [3] Data-driven identification of vehicle dynamics using Koopman operator
    Cibulka, Vit
    Hanis, Tomas
    Hromcik, Martin
    PROCEEDINGS OF THE 2019 22ND INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC19), 2019, : 167 - 172
  • [4] Modularized data-driven approximation of the Koopman operator and generator
    Guo, Yang
    Schaller, Manuel
    Worthmann, Karl
    Streif, Stefan
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 476
  • [5] DATA-DRIVEN AND LOW-RANK IMPLEMENTATIONS OF BALANCED SINGULAR PERTURBATION APPROXIMATION
    Liljegren-sailer, Bjoern
    Gosea, Ion victor
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (01): : A483 - A507
  • [6] Data-driven Battery Modeling based on Koopman Operator Approximation using Neural Network
    Choi, Hyungjin
    De Angelis, Valerio
    Preger, Yuliya
    2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [7] A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
    Williams, Matthew O.
    Kevrekidis, Ioannis G.
    Rowley, Clarence W.
    JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (06) : 1307 - 1346
  • [8] Data-driven inference of bioprocess models: A low-rank matrix approximation approach
    Pimentel, Guilherme A.
    Dewasme, Laurent
    Vande Wouwer, Alain
    JOURNAL OF PROCESS CONTROL, 2024, 134
  • [9] Data-Driven Fault Detection and Isolation for Multirotor System Using Koopman Operator
    Lee, Jayden Dongwoo
    Im, Sukjae
    Kim, Lamsu
    Ahn, Hyungjoo
    Bang, Hyochoong
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2024, 110 (03)
  • [10] Data-Driven Optimal PMU Placement for Power System Nonlinear Dynamics Using Koopman Approach
    Ge, Jiacheng
    Xu, Yijun
    Wu, Zaijun
    Mili, Lamine
    Lu, Shuai
    Hu, Qinran
    Gu, Wei
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (09) : 11306 - 11317