Negative differential conductance effect and electrical anisotropy of 2D ZrB2 monolayers

被引:43
作者
An, Yipeng [1 ,2 ,3 ]
Jiao, Jutao [1 ,2 ]
Hou, Yusheng [3 ]
Wang, Hui [3 ]
Wu, Rudian [3 ]
Liu, Chengyan [3 ]
Chen, Xuenian [2 ,4 ]
Wang, Tianxing [1 ,2 ]
Wang, Kun [5 ]
机构
[1] Henan Normal Univ, Coll Phys & Mat Sci, Xinxiang 453007, Peoples R China
[2] Henan Normal Univ, Int United Henan Key Lab Boron Chem & Adv Energy, Xinxiang 453007, Peoples R China
[3] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[4] Henan Normal Univ, Sch Chem & Chem Engn, Xinxiang 453007, Peoples R China
[5] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
基金
中国国家自然科学基金;
关键词
nanodevices; electronic transport; negative differential conductance; density functional theory; non-equilibrium Green's function; two-dimensional materials; ZrB2; monolayer; GENERALIZED GRADIENT APPROXIMATION; ELECTRONIC TRANSPORT-PROPERTIES; BOROPHENE; RESISTANCE; GRAPHENE;
D O I
10.1088/1361-648X/aaf5b2
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Two-dimensional (2D) metal-diboride ZrB2 monolayers was predicted theoretically as a stable new electronic material (Lopez-Bezanilla 2018 Phys. Rev. Mater 2 011002). Here, we investigate its electronic transport properties along the zigzag (z-ZrB2) and armchair (a-ZrB2) directions, using the density functional theory and non-equilibrium Green's function methods. Under low biases, the 2D ZrB2 shows a similar electrical transport along zigzag and armchair directions as electric current propagates mostly via the metallic Zr-Zr bonds. However, it shows an electrical anistropy under high biases, and its I-V curves along zigzag and armchair directions diverge as the bias voltage is higher than 1.4 V, as more directional B-B transmission channels are opened. Importantly, both z-ZrB2 and a-ZrB2 show a pronounced negative differential conductance (NDC) effect and hence they can be promising for the use in NDC-based nanodevices.
引用
收藏
页数:6
相关论文
共 43 条
  • [1] The electronic transport properties of transition-metal dichalcogenide lateral heterojunctions
    An, Yipeng
    Zhang, Mengjun
    Wu, Dapeng
    Fu, Zhaoming
    Wang, Kun
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (46) : 10962 - 10966
  • [2] High purity synthesis of ZrB2 by a combined ball milling and carbothermal method: Structural and magnetic properties
    Baris, Mustafa
    Simsek, Tuncay
    Simsek, Telem
    Ozcan, Sadan
    Kalkan, Bora
    [J]. ADVANCED POWDER TECHNOLOGY, 2018, 29 (10) : 2440 - 2446
  • [3] Free surfaces recast superconductivity in few-monolayer MgB2: Combined first-principles and ARPES demonstration
    Bekaert, J.
    Bignardi, L.
    Aperis, A.
    van Abswoude, P.
    Mattevi, C.
    Gorovikov, S.
    Petaccia, L.
    Goldoni, A.
    Partoens, B.
    Oppeneer, P. M.
    Peeters, F. M.
    Milosevic, M. V.
    Rudolf, P.
    Cepek, C.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [4] Density-functional method for nonequilibrium electron transport -: art. no. 165401
    Brandbyge, M
    Mozos, JL
    Ordejón, P
    Taylor, J
    Stokbro, K
    [J]. PHYSICAL REVIEW B, 2002, 65 (16) : 1654011 - 16540117
  • [5] A monolithic 4-bit 2-Gsps resonant tunneling analog-to-digital converter
    Broekaert, TPE
    Brar, B
    van der Wagt, JPA
    Seabaugh, AC
    Morris, FJ
    Moise, TS
    Beam, EA
    Frazier, GA
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1998, 33 (09) : 1342 - 1349
  • [6] OSCILLATIONS UP TO 712 GHZ IN INAS/ALSB RESONANT-TUNNELING DIODES
    BROWN, ER
    SODERSTROM, JR
    PARKER, CD
    MAHONEY, LJ
    MOLVAR, KM
    MCGILL, TC
    [J]. APPLIED PHYSICS LETTERS, 1991, 58 (20) : 2291 - 2293
  • [7] GENERALIZED MANY-CHANNEL CONDUCTANCE FORMULA WITH APPLICATION TO SMALL RINGS
    BUTTIKER, M
    IMRY, Y
    LANDAUER, R
    PINHAS, S
    [J]. PHYSICAL REVIEW B, 1985, 31 (10): : 6207 - 6215
  • [8] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [9] RESONANT TUNNELING IN SEMICONDUCTOR DOUBLE BARRIERS
    CHANG, LL
    ESAKI, L
    TSU, R
    [J]. APPLIED PHYSICS LETTERS, 1974, 24 (12) : 593 - 595
  • [10] Strong negative differential conductance in strained graphene devices
    Chung Nguyen, M.
    Hung Nguyen, V.
    Huy-Viet Nguyen
    Dollfus, P.
    [J]. JOURNAL OF APPLIED PHYSICS, 2015, 118 (23)