Predicting Cancer Drug Response In Vivo by Learning an Optimal Feature Selection of Tumour Molecular Profiles

被引:17
作者
Nguyen, Linh C. [1 ,2 ,3 ,4 ,5 ]
Naulaerts, Stefan [6 ,7 ]
Bruna, Alejandra [8 ]
Ghislat, Ghita [9 ]
Ballester, Pedro J. [1 ,2 ,3 ,4 ]
机构
[1] Canc Res Ctr Marseille, INSERM, U1068, F-13009 Marseille, France
[2] Inst Paoli Calmettes, F-13009 Marseille, France
[3] Aix Marseille Univ, UM105, F-13009 Marseille, France
[4] CNRS, UMR7258, F-13009 Marseille, France
[5] Univ Sci & Technol Hanoi, Vietnam Acad Sci & Technol, Dept Life Sci, Hanoi 100803, Vietnam
[6] Ludwig Inst Canc Res, B-1200 Brussels, Belgium
[7] UCLouvain, Duve Inst, B-1200 Brussels, Belgium
[8] Inst Canc Res, London SM2 5NG, England
[9] CNRS, Ctr Immunol Marseille Luminy, INSERM, U1104,UMR7280, F-13009 Marseille, France
关键词
biomarker discovery; machine learning; patient-derived xenograft; precision oncology; tumour profiling; PATIENT-DERIVED XENOGRAFTS; SYSTEMATIC IDENTIFICATION; MODEL SELECTION; SENSITIVITY; GENE; PRECISION; CLASSIFICATION; THERAPY; HETEROGENEITY; CHEMOTHERAPY;
D O I
10.3390/biomedicines9101319
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
(1) Background: Inter-tumour heterogeneity is one of cancer's most fundamental features. Patient stratification based on drug response prediction is hence needed for effective anti-cancer therapy. However, single-gene markers of response are rare and/or may fail to achieve a significant impact in the clinic. Machine Learning (ML) is emerging as a particularly promising complementary approach to precision oncology. (2) Methods: Here we leverage comprehensive Patient-Derived Xenograft (PDX) pharmacogenomic data sets with dimensionality-reducing ML algorithms with this purpose. (3) Results: Combining multiple gene alterations via ML leads to better discrimination between sensitive and resistant PDXs in 19 of the 26 analysed cases. Highly predictive ML models employing concise gene lists were found for three cases: paclitaxel (breast cancer), binimetinib (breast cancer) and cetuximab (colorectal cancer). Interestingly, each of these multi-gene ML models identifies some treatment-responsive PDXs not harbouring the best actionable mutation for that case. Thus, ML multi-gene predictors generally have much fewer false negatives than the corresponding single-gene marker. (4) Conclusions: As PDXs often recapitulate clinical outcomes, these results suggest that many more patients could benefit from precision oncology if ML algorithms were also applied to existing clinical pharmacogenomics data, especially those algorithms generating classifiers combining data-selected gene alterations.</p>
引用
收藏
页数:25
相关论文
共 78 条
[1]   Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression [J].
Ammad-ud-din, Muhammad ;
Khan, Suleiman A. ;
Wennerberg, Krister ;
Aittokallio, Tero .
BIOINFORMATICS, 2017, 33 (14) :I359-I368
[2]   AACR Project GENIE: Powering Precision Medicine through an International Consortium [J].
Andre, Fabrice ;
Arnedos, Monica ;
Baras, Alexander S. ;
Baselga, Jose ;
Bedard, Philippe L. ;
Berger, Michael F. ;
Bierkens, Mariska ;
Calvo, Fabien ;
Cerami, Ethan ;
Chakravarty, Debyani ;
Dang, Kristen K. ;
Davidson, Nancy E. ;
Del Vecchio, Fitz Catherine ;
Dogan, Semih ;
DuBois, Raymond N. ;
Ducar, Matthew D. ;
Futreal, P. Andrew ;
Gao Jianjiong ;
Garcia, Francisco ;
Gardos, Stu ;
Gocke, Christopher D. ;
Gross, Benjamin E. ;
Guinney, Justin ;
Heins, Zachary J. ;
Hintzen, Stephanie ;
Horlings, Hugo ;
Hudecek, Jan ;
Hyman, David M. ;
Kamel-Reid, Suzanne ;
Kandoth, Cyriac ;
Kinyua, Walter ;
Kumari, Priti ;
Kundra, Ritika ;
Ladanyi, Marc ;
Lefebvre, Celine ;
LeNoue-Newton, Michele L. ;
Lepisto, Eva M. ;
Levy, Mia A. ;
Lindeman, Neal, I ;
Lindsay, James ;
Liu, David ;
Lu Zhibin ;
MacConaill, Laura E. ;
Ian, Maurer ;
Maxwell, David S. ;
Meijer, Gerrit A. ;
Meric-Bernstam, Funda ;
Micheel, Christine M. ;
Miller, Clinton ;
Mills, Gordon .
CANCER DISCOVERY, 2017, 7 (08) :818-831
[3]   Phase II Trial (BREAK-2) of the BRAF Inhibitor Dabrafenib (GSK2118436) in Patients With Metastatic Melanoma [J].
Ascierto, Paolo A. ;
Minor, David ;
Ribas, Antoni ;
Lebbe, Celeste ;
O'Hagan, Anne ;
Arya, Niki ;
Guckert, Mary ;
Schadendorf, Dirk ;
Kefford, Richard F. ;
Grob, Jean-Jacques ;
Hamid, Omid ;
Amaravadi, Ravi ;
Simeone, Ester ;
Wilhelm, Tabea ;
Kim, Kevin B. ;
Long, Georgina V. ;
Martin, Anne-Marie ;
Mazumdar, Jolly ;
Goodman, Vicki L. ;
Trefzer, Uwe .
JOURNAL OF CLINICAL ONCOLOGY, 2013, 31 (26) :3205-+
[4]   Computational models for predicting drug responses in cancer research [J].
Azuaje, Francisco .
BRIEFINGS IN BIOINFORMATICS, 2017, 18 (05) :820-829
[5]   Artificial intelligence for the next generation of precision oncology [J].
Ballester, Pedro J. ;
Carmona, Javier .
NPJ PRECISION ONCOLOGY, 2021, 5 (01)
[6]   A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking [J].
Ballester, Pedro J. ;
Mitchell, John B. O. .
BIOINFORMATICS, 2010, 26 (09) :1169-1175
[7]   An Integrated Approach to Anti-Cancer Drug Sensitivity Prediction [J].
Berlow, Noah ;
Haider, Saad ;
Wan, Qian ;
Geltzeiler, Mathew ;
Davis, Lara E. ;
Keller, Charles ;
Pal, Ranadip .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2014, 11 (06) :995-1008
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]   A Biobank of Breast Cancer Explants with Preserved Intra-tumor Heterogeneity to Screen Anticancer Compounds [J].
Bruna, Alejandra ;
Rueda, Oscar M. ;
Greenwood, Wendy ;
Batra, Ankita Sati ;
Callari, Maurizio ;
Batra, Rajbir Nath ;
Pogrebniak, Katherine ;
Sandoval, Jose ;
Cassidy, John W. ;
Tufegdzic-Vidakovic, Ana ;
Sammut, Stephen-John ;
Jones, Linda ;
Provenzano, Elena ;
Baird, Richard ;
Eirew, Peter ;
Hadfield, James ;
Eldridge, Matthew ;
McLaren-Douglas, Anne ;
Barthorpe, Andrew ;
Lightfoot, Howard ;
O'Connor, Mark J. ;
Gray, Joe ;
Cortes, Javier ;
Baselga, Jose ;
Marangoni, Elisabetta ;
Welm, Alana L. ;
Aparicio, Samuel ;
Serra, Violeta ;
Garnett, Mathew J. ;
Caldas, Carlos .
CELL, 2016, 167 (01) :260-+
[10]  
Cawley GC, 2010, J MACH LEARN RES, V11, P2079