log-log blow up solutions blow up at exactly m points

被引:9
作者
Fan, Chenjie [1 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2017年 / 34卷 / 06期
基金
美国国家科学基金会;
关键词
NLS; log-log blow up; m points blow up; Bootstrap; Propagation of regularity; Topological argument; NONLINEAR SCHRODINGER-EQUATION; STABILITY; NLS; CONSTRUCTION; EXISTENCE; SPHERE; MASS;
D O I
10.1016/j.anihpc.2016.11.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the focusing mass-critical nonlinear Schrodinger equation, and construct certain solutions which blow up at exactly m points according to the log-log law. (C) 2016 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1429 / 1482
页数:54
相关论文
共 30 条
[1]  
CAZENAVE T, 1989, LECT NOTES MATH, V1394, P18
[2]  
Colliander J, 2002, MATH RES LETT, V9, P659
[3]   Rough blowup solutions to the L2 critical NLS [J].
Colliander, James ;
Raphael, Pierre .
MATHEMATISCHE ANNALEN, 2009, 345 (02) :307-366
[4]   Construction of multi-soliton solutions for the L2-supercritical gKdV and NLS equations [J].
Cote, Raphael ;
Martel, Yvan ;
Merle, Frank .
REVISTA MATEMATICA IBEROAMERICANA, 2011, 27 (01) :273-302
[5]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .2. SCATTERING THEORY, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :33-71
[6]   BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS [J].
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) :1794-1797
[7]  
Godet N., 2013, DYN PARTIAL DIFFER E, V10
[8]   BLOW-UP SOLUTIONS ON A SPHERE FOR THE 3D QUINTIC NLS IN THE ENERGY SPACE [J].
Holmer, Justin ;
Roudenko, Svetlana .
ANALYSIS & PDE, 2012, 5 (03) :475-512
[9]   Endpoint Strichartz estimates [J].
Keel, M ;
Tao, T .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (05) :955-980
[10]   WELL-POSEDNESS AND SCATTERING RESULTS FOR THE GENERALIZED KORTEWEG-DEVRIES EQUATION VIA THE CONTRACTION PRINCIPLE [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (04) :527-620