Biomarkers of ageing and frailty may predict COVID-19 severity

被引:28
作者
Wanhella, Kailyn J. [1 ]
Fernandez-Patron, Carlos [1 ]
机构
[1] Univ Alberta, Coll Hlth Sci, Fac Med & Dent, Dept Biochem, Edmonton, AB T6G 2H7, Canada
关键词
COVID-19; SARS-CoV-2; Biomarker; Coronavirus; Frailty; Disease tolerance; SEVERE CORONAVIRUS DISEASE; SERUM AMYLOID-A; WUHAN; ASSOCIATION; MECHANISMS; PROTEOMICS; TOLERANCE; INFECTION; INTERPLAY; PROTEIN;
D O I
10.1016/j.arr.2021.101513
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Coronavirus Disease 2019 (COVID-19) is caused by the novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) - the culprit of an ongoing pandemic responsible for the loss of over 3 million lives worldwide within a year and a half. While the majority of SARS-CoV-2 infected people develop no or mild symptoms, some become severely ill and may die from COVID-19-related complications. In this review, we compile and comment on a number of biomarkers that have been identified and are expected to enhance the detection, protection and treatment of individuals at high risk of developing severe illnesses, as well as enable the monitoring of COVID-19 prognosis and responsiveness to therapeutic interventions. Consistent with the emerging notion that the majority of COVID-19 deaths occur in older and frail individuals, we researched the scientific literature and report the identification of a subset of COVID-19 biomarkers indicative of increased vulnerability to developing severe COVID-19 in older and frail patients. Mechanistically, increased frailty results from reduced disease tolerance, a phenomenon aggravated by ageing and comorbidities. While biomarkers of ageing and frailty may predict COVID-19 severity, biomarkers of disease tolerance may predict resistance to COVID-19 with socio-economic factors such as access to adequate health care remaining as major nonbiomolecular influencers of COVID-19 outcomes.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Laboratory Biomarkers Associated with Severity and Mortality of COVID-19 [J].
Allarakia, Basmah M. Azad ;
Gattan, Hattan ;
Al-Ahmadi, Bassam M. ;
Abdeen, Rawan H. ;
Bazaid, Mohammed B. ;
Shater, Abdullah F. ;
Jalal, Mohammed M. ;
Saeedi, Nizar H. ;
Mohammedsaleh, Zuhair M. ;
Altayar, Malik A. ;
Alreshidi, Maha ;
Bazaid, Abdulrahman S. .
CLINICAL LABORATORY, 2022, 68 (02) :291-297
[32]   Proteomic profiling identifies biomarkers of COVID-19 severity [J].
Harriott, Noa C. ;
Ryan, Amy L. .
HELIYON, 2024, 10 (01)
[33]   Laboratory biomarkers associated with COVID-19 severity and management [J].
Keddie, S. ;
Ziff, O. ;
Chou, M. K. L. ;
Taylor, R. L. ;
Heslegrave, A. ;
Garr, E. ;
Lakdawala, N. ;
Church, A. ;
Ludwig, D. ;
Manson, J. ;
Scully, M. ;
Nastouli, E. ;
Chapman, Md ;
Hart, M. ;
Lunn, Mp .
CLINICAL IMMUNOLOGY, 2020, 221
[34]   Severity of Anosmia as an Early Symptom of COVID-19 Infection May Predict Lasting Loss of Smell [J].
Lechien, Jerome R. ;
Journe, Fabrice ;
Hans, Stephane ;
Chiesa-Estomba, Carlos M. ;
Mustin, Vincent ;
Beckers, Eline ;
Vaira, Luigi A. ;
De Riu, Giacomo ;
Hopkins, Claire ;
Saussez, Sven .
FRONTIERS IN MEDICINE, 2020, 7
[35]   Evaluation of altered miRNA expression pattern to predict COVID-19 severity [J].
Srivastava, Swati ;
Garg, Iti ;
Singh, Yamini ;
Meena, Ramesh ;
Ghosh, Nilanjana ;
Kumari, Babita ;
Kumar, Vinay ;
Eslavath, Malleswara Rao ;
Singh, Sayar ;
Dogra, Vikas ;
Bargotya, Mona ;
Bhattar, Sonali ;
Gupta, Utkarsh ;
Jain, Shruti ;
Hussain, Javid ;
Varshney, Rajeev ;
Ganju, Lilly .
HELIYON, 2023, 9 (02)
[36]   Does the Thymus Index Predict COVID-19 Severity? [J].
Berkan, Ocal ;
Kiziloglu, Ilker ;
Keles, Ercan ;
Duman, Lale ;
Bozkurt, Mehmet ;
Adibelli, Zehra ;
Oncel, Guray ;
Berkan, Nevsin ;
Keles, Yildiz Ekemen ;
Jones, Jeremy H. ;
Inan, Abdurrahman Hamdi ;
Solak, Cihan ;
Emiroglu, Mustafa ;
Yildirim, Mehmet ;
Dursun, Ayberk ;
Ilhan, Enver ;
Camyar, Asuman ;
Inceer, Ozge ;
Nart, Ahmet ;
Yilmaz, Mehmet Birhan .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2023, 47 (02) :236-243
[37]   A Bayesian Model to Predict COVID-19 Severity in Children [J].
Dominguez-Rodriguez, Sara ;
Villaverde, Serena ;
Sanz-Santaeufemia, Francisco J. ;
Grasa, Carlos ;
Soriano-Arandes, Antoni ;
Saavedra-Lozano, Jesus ;
Fumado, Victoria ;
Epalza, Cristina ;
Serna-Pascual, Miquel ;
Alonso-Cadenas, Jose A. ;
Rodriguez-Molino, Paula ;
Pujol-Morro, Joan ;
Aguilera-Alonso, David ;
Simo, Silvia ;
Villanueva-Medina, Sara ;
Isabel Iglesias-Bouzas, M. ;
Jose Mellado, M. ;
Herrero, Blanca ;
Melendo, Susana ;
De la Torre, Mercedes ;
Del Rosal, Teresa ;
Soler-Palacin, Pere ;
Calvo, Cristina ;
Urretavizcaya-Martinez, Maria ;
Pareja, Marta ;
Ara-Montojo, Fatima ;
Ruiz del Prado, Yolanda ;
Gallego, Nerea ;
Illan Ramos, Marta ;
Cobos, Elena ;
Tagarro, Alfredo ;
Moraleda, Cinta .
PEDIATRIC INFECTIOUS DISEASE JOURNAL, 2021, 40 (08) :E287-E293
[38]   In-hospital mortality prediction using frailty scale and severity score in elderly patients with severe COVID-19 [J].
Na, Yong Sub ;
Kim, Jin Hyoung ;
Baek, Moon Seong ;
Kim, Won-Young ;
Baek, Ae-Rin ;
Lee, Bo Young ;
Seong, Gil Myeong ;
Lee, Song-I .
ACUTE AND CRITICAL CARE, 2022, 37 (03) :303-311
[39]   Viral load and disease severity in COVID-19 [J].
Pawar, Rahul Dnyaneshwar ;
Balaji, Lakshman ;
Mehta, Shivani ;
Cole, Andrew ;
Liu, Xiaowen ;
Peradze, Natia ;
Grossestreuer, Anne Victoria ;
Issa, Mahmoud Salah ;
Patel, Parth ;
Kirby, James Edward ;
Rowley, Christopher Francis ;
Berg, Katherine Margaret ;
Moskowitz, Ari ;
Donnino, Michael William .
INTERNAL AND EMERGENCY MEDICINE, 2022, 17 (02) :359-367
[40]   Mortality Prediction Utilizing Blood Biomarkers to Predict the Severity of COVID-19 Using Machine Learning Technique [J].
Rahman, Tawsifur ;
Al-Ishaq, Fajer A. ;
Al-Mohannadi, Fatima S. ;
Mubarak, Reem S. ;
Al-Hitmi, Maryam H. ;
Islam, Khandaker Reajul ;
Khandakar, Amith ;
Hssain, Ali Ait ;
Al-Madeed, Somaya ;
Zughaier, Susu M. ;
Chowdhury, Muhammad E. H. .
DIAGNOSTICS, 2021, 11 (09)