Functional coordination of non-myocytes plays a key role in adult zebrafish heart regeneration

被引:20
作者
Ma, Hong [1 ,2 ,9 ]
Liu, Ziqing [1 ,2 ]
Yang, Yuchen [1 ,2 ,3 ]
Feng, Dong [1 ,2 ]
Dong, Yanhan [1 ,2 ]
Garbutt, Tiffany A. [1 ,2 ]
Hu, Zhiyuan [4 ]
Wang, Li [1 ,2 ]
Luan, Changfei [1 ,2 ]
Cooper, Cynthia D. [5 ]
Li, Yun [3 ,6 ,7 ]
Welch, Joshua D. [8 ]
Qian, Li [1 ,2 ]
Liu, Jiandong [1 ,2 ]
机构
[1] Univ N Carolina, McAllister Heart Inst, Chapel Hill, NC 27515 USA
[2] Univ N Carolina, Dept Pathol & Lab Med, Chapel Hill, NC 27515 USA
[3] Univ N Carolina, Dept Genet, Chapel Hill, NC USA
[4] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC USA
[5] Washington State Univ, Sch Mol Biosci, Vancouver, WA USA
[6] Univ N Carolina, Dept Biostat, Chapel Hill, NC USA
[7] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC USA
[8] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[9] Zhejiang Univ, Affiliated Hosp 2, Sch Med, Dept Cardiol, Hangzhou, Peoples R China
关键词
heart regeneration; non-myocytes; scRNA-Seq; Topologizer; zebrafish; CELL TRANSCRIPTOME ANALYSIS; EPICARDIAL CELLS; EXPRESSION; GENE; DIFFERENTIATION; INFLAMMATION; MACROPHAGES; REVEALS; DEDIFFERENTIATION; CARDIOMYOCYTES;
D O I
10.15252/embr.202152901
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cardiac regeneration occurs primarily through proliferation of existing cardiomyocytes, but also involves complex interactions between distinct cardiac cell types including non-cardiomyocytes (non-CMs). However, the subpopulations, distinguishing molecular features, cellular functions, and intercellular interactions of non-CMs in heart regeneration remain largely unexplored. Using the LIGER algorithm, we assemble an atlas of cell states from 61,977 individual non-CM scRNA-seq profiles isolated at multiple time points during regeneration. This analysis reveals extensive non-CM cell diversity, including multiple macrophage (MC), fibroblast (FB), and endothelial cell (EC) subpopulations with unique spatiotemporal distributions, and suggests an important role for MC in inducing the activated FB and EC subpopulations. Indeed, pharmacological perturbation of MC function compromises the induction of the unique FB and EC subpopulations. Furthermore, we developed computational algorithm Topologizer to map the topological relationships and dynamic transitions between functional states. We uncover dynamic transitions between MC functional states and identify factors involved in mRNA processing and transcriptional regulation associated with the transition. Together, our single-cell transcriptomic analysis of non-CMs during cardiac regeneration provides a blueprint for interrogating the molecular and cellular basis of this process.
引用
收藏
页数:20
相关论文
共 122 条
[91]   The multifaceted roles of the invariant chain CD74-More than just a chaperone [J].
Schroeder, Bernd .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2016, 1863 (06) :1269-1281
[92]   Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells [J].
Shi, Wei ;
Liao, Yang ;
Willis, Simon N. ;
Taubenheim, Nadine ;
Inouye, Michael ;
Tarlinton, David M. ;
Smyth, Gordon K. ;
Hodgkin, Philip D. ;
Nutt, Stephen L. ;
Corcoran, Lynn M. .
NATURE IMMUNOLOGY, 2015, 16 (06) :663-+
[93]   E-Selectin Ligands in the Human Mononuclear Phagocyte System: Implications for Infection, Inflammation, and Immunotherapy [J].
Silva, Mariana ;
Videira, Paula A. ;
Sackstein, Robert .
FRONTIERS IN IMMUNOLOGY, 2018, 8
[94]  
Singh G., 2007, PBG@ Eurograph, V2, P091, DOI DOI 10.2312/SPBG/SPBG07/091-100
[95]   Mapping the dynamic expression of Wnt11 and the lineage contribution of Wnt11-expressing cells during early mouse development [J].
Sinha, Tanvi ;
Lin, Lizhu ;
Li, Ding ;
Davis, Jennifer ;
Evans, Sylvia ;
Wynshaw-Boris, Anthony ;
Wang, Jianbo .
DEVELOPMENTAL BIOLOGY, 2015, 398 (02) :177-192
[96]   Origin of Cardiac Fibroblasts and the Role of Periostin [J].
Snider, Paige ;
Standley, Kara N. ;
Wang, Jian ;
Azhar, Mohamad ;
Doetschman, Thomas ;
Conway, Simon J. .
CIRCULATION RESEARCH, 2009, 105 (10) :934-947
[97]   ISOLATION OF A NOVEL MACROPHAGE-SPECIFIC GENE BY DIFFERENTIAL CDNA ANALYSIS [J].
SPILSBURY, K ;
OMARA, MA ;
WU, WM ;
ROWE, PB ;
SYMONDS, G ;
TAKAYAMA, Y .
BLOOD, 1995, 85 (06) :1620-1629
[98]   Yolk sac macrophage progenitors traffic to the embryo during defined stages of development [J].
Stremmel, C. ;
Schuchert, R. ;
Wagner, F. ;
Thaler, R. ;
Weinberger, T. ;
Pick, R. ;
Mass, E. ;
Ishikawa-Ankerhold, H. C. ;
Margraf, A. ;
Hutter, S. ;
Vagnozzi, R. ;
Klapproth, S. ;
Frampton, J. ;
Yona, S. ;
Scheiermann, C. ;
Molkentin, J. D. ;
Jeschke, U. ;
Moser, M. ;
Sperandio, M. ;
Massberg, S. ;
Geissmann, F. ;
Schulz, C. .
NATURE COMMUNICATIONS, 2018, 9
[99]   Integrative single-cell analysis [J].
Stuart, Tim ;
Satija, Rahul .
NATURE REVIEWS GENETICS, 2019, 20 (05) :257-272
[100]   Essential roles of EphrinB2 in mammalian heart: from development to diseases [J].
Su, Sheng-an ;
Xie, Yao ;
Zhang, Yuhao ;
Xi, Yutao ;
Cheng, Jie ;
Xiang, Meixiang .
CELL COMMUNICATION AND SIGNALING, 2019, 17 (1)