Regularized learning framework in the estimation of reflectance spectra from camera responses

被引:51
作者
Heikkinen, Ville
Jetsu, Tuija
Parkkinen, Jussi
Hauta-Kasari, Markku
Jaaskelainen, Timo
Lee, Seong Deok
机构
[1] Univ Joensuu, InFoton Ctr, FIN-80101 Joensuu, Finland
[2] Samsung Adv Inst Technol, Comp Lab, Display & Image Proc STU, Kyonggi Do 449712, South Korea
关键词
D O I
10.1364/JOSAA.24.002673
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
For digital cameras, device-dependent pixel values describe the camera's response to the incoming spectrum of light. We convert device-dependent RGB values to device- and illuminant-independent reflectance spectra. Simple regularization methods with widely used polynomial modeling provide an efficient approach for this conversion. We also introduce a more general framework for spectral estimation: regularized least-squares regression in reproducing kernel Hilbert spaces (RKHS). Obtained results show that the regularization framework provides an efficient approach for enhancing the generalization properties of the models. (c) 2007 Optical Society of America.
引用
收藏
页码:2673 / 2683
页数:11
相关论文
共 31 条
[1]  
[Anonymous], 2004, KERNEL METHODS PATTE
[2]  
[Anonymous], 1998, Encyclopedia of Biostatistics
[3]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[4]   ILL-POSED PROBLEMS IN EARLY VISION [J].
BERTERO, M ;
POGGIO, TA ;
TORRE, V .
PROCEEDINGS OF THE IEEE, 1988, 76 (08) :869-889
[5]  
Bjorck A., 1996, NUMERICAL METHODS LE, DOI DOI 10.1137/1.9781611971484
[6]   Spectral recovery using polynomial models [J].
Connah, D ;
Hardeberg, JY .
COLOR IMAGING X: PROCESSING, HARDCOPY, AND APPLICATIONS, 2005, :65-75
[7]  
Cucker F, 2002, B AM MATH SOC, V39, P1
[8]   Regularization networks and support vector machines [J].
Evgeniou, T ;
Pontil, M ;
Poggio, T .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 13 (01) :1-50
[9]  
Fairchild MD, 1998, COLOR APPEARANCE MOD
[10]  
Friedman J, 2001, The elements of statistical learning, V1, DOI DOI 10.1007/978-0-387-21606-5