Chlodowsky Szasz-Kantorovich operators via Dunkl analogue

被引:0
作者
Rao, Nadeem [1 ]
Wafi, Abdul [1 ]
机构
[1] Jamia Millia Islamia, Dept Math, New Delhi 110025, India
来源
APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL | 2019年 / 14卷 / 01期
关键词
Szasz operators; modulus of continuity; rate of convergence; Dunkl analogue;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of the present article is to design a sequence of Chlodowsky Szasz-Kantorovich operators based on Dunkl analogue for the purpose to achieve faster rate of convergence in terms of two positive and unbounded real number sequences and the basic results are estimated. Further, the uniform approximation by means of Korovkin theorem using test functions e(i)(t) = t(i); i = 0; 1; 2 is investigated. Moreover, the local and global approximation results are discussed for these sequences of linear positive operators.
引用
收藏
页码:370 / 381
页数:12
相关论文
共 11 条
  • [1] Altomare F., 1994, DEGRUYTER STUDIES MA, V17, P627
  • [2] [Anonymous], GRUDLEHREN MATH WISS
  • [3] THEOREMS OF KOROVKIN TYPE
    GADZHIEV, AD
    [J]. MATHEMATICAL NOTES, 1976, 20 (5-6) : 995 - 998
  • [4] Dunkl generalization of Szasz operators via q-calculus
    Icoz, Gurhan
    Cekim, Bayram
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [5] Stancu Type Generalization of Dunkl Analogue of SzA sz Operators
    Karaisa, Ali
    Karakoc, Fatih
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (04) : 1235 - 1248
  • [6] LENZE B, 1988, P K NED AKAD A MATH, V91, P53
  • [7] Rao N., 2018, ITALIAN J PURE APPL
  • [8] Rosenblum M., 1994, Non Selfadjoint Operators and Related Topics, P369, DOI [DOI 10.1007/978-3-0348-8522-5_15, 10.1007/978-3-0348-8522-515, DOI 10.1007/978-3-0348-8522-515]
  • [9] Dunkl analogue of Szasz operators
    Sucu, Sezgin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 42 - 48
  • [10] Szasz-Gamma Operators Based on Dunkl Analogue
    Wafi, Abdul
    Rao, Nadeem
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A1): : 213 - 223