New Applications of an Improved (G′/G)-expansion Method to Construct the Exact Solutions of Nonlinear PDEs

被引:1
作者
Zayed, Elsayed M. E. [1 ,2 ]
Gepreerl, Khaled A. [1 ,2 ]
机构
[1] Taif Univ, Fac Sci, Dept Math, El Taif, El Hawiyah, Saudi Arabia
[2] Zagazig Univ, Fac Sci, Dept Math, Zagazig, Egypt
关键词
an improved (G '/G) - expansion method; traveling wave solutions; solitary wave solutions; nonlinear PDEs; exp-function method; TRAVELING-WAVE SOLUTIONS; EXTENDED TANH-FUNCTION; EXP-FUNCTION METHOD; MATHEMATICAL PHYSICS; SOLITON-SOLUTIONS; SHALLOW-WATER; F-EXPANSION; EQUATIONS; EXPLICIT; FORMS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present article, we construct traveling wave solutions involving parameters of some nonlinear PDEs in mathematical physics namely Konopelchenko-Dubrovsky equations, Kersten- Krasil' Shchik equations, Whitham- Broer Kaup equations and the fifth order KdV equation using an improved (G'/G)-expansion method, where G satisfies a second order linear ordinary differential equation. When these parameters are taken special values, the solitary waves are derived from the traveling waves. The exact wave solutions are expressed by hyperbolic, trigonometric and rational functions. Comparison between this method and the exp-function method is presented.
引用
收藏
页码:273 / 283
页数:11
相关论文
共 20 条
[1]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[2]  
Bin Z Y, 2009, COMMUN THEOR PHYS, V51, P664
[3]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[4]   Special forms of the fifth-order KdV equation with new periodic and soliton solutions [J].
Gomez-S, Cesar A. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (02) :1066-1077
[5]   Exp-function method for nonlinear wave equations [J].
He, Ji-Huan ;
Wu, Xu-Hong .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :700-708
[6]   Integrability of Kersten-Krasil'shchik coupled KdV-mKdV equations: singularity analysis and Lax pair [J].
Kalkanli, AK ;
Sakovich, SY ;
Yurdusen, I .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (04) :1703-1708
[7]   Be careful with the Exp-function method [J].
Kudryashov, Nikolai A. ;
Loguinova, Nadejda B. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) :1881-1890
[8]   Explicit and exact travelling wave solutions for Konopelchenko-Dubrovsky equation [J].
Li, Bacui ;
Zhang, Yufeng .
CHAOS SOLITONS & FRACTALS, 2008, 38 (04) :1202-1208
[9]  
Miura M.R., 1978, Backlund Transformation
[10]  
Rogers C., 1982, Backlund Transformations and their Applications