Testing an analytic model for Richtmyer-Meshkov turbulent mixing widths

被引:27
作者
Mikaelian, K. O. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
关键词
Turbulent mix; Shocks; Reshocks; Rayleigh-Taylor; Richtmyer-Meshkov; National Shock-Tube Facility; RAYLEIGH-TAYLOR INSTABILITY; NUMERICAL SIMULATIONS; AIR/SF6; INTERFACE; FLUIDS; ACCELERATION; PERTURBATIONS;
D O I
10.1007/s00193-014-0537-0
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We discuss a model for the evolution of the turbulent mixing width after a shock or a reshock passes through the interface between two fluids of densities and inducing a velocity jump . In this model, the initial growth rate is independent of the surface finish or initial mixing width , but its duration is directly proportional to it: for , and for . Here is the Atwood number and are dimensionless, -dependent parameters measured in past Rayleigh-Taylor experiments, and is a new dimensionless parameter we introduce via . The mixing width and its derivative remain continuous at since and . We evaluate at from air/SF experiments and propose that the transition at signals isotropication of turbulence. We apply this model to the recent experiments of Jacobs et al. (Shock Waves 23:407-413, 2013) on shock and reshock, and discuss briefly the third wave causing an unstable acceleration of the interface. We also consider the experiments of Weber et al. (Phys Fluids 24:074105, 2012) and argue that their smaller growth rates reflect density gradient stabilization.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 60 条
[1]  
[Anonymous], HYDRA for simulations of inertial confinement fusion tar
[2]  
[Anonymous], MEGAGAUSS TECHNOLOGY
[3]  
Arnett D., 1996, Phys. Today, V49, P68, DOI [10.1063/1.2807808, DOI 10.1063/1.2807808]
[4]   EXPERIMENTS ON THE RICHTMYER-MESHKOV INSTABILITY - SINGLE-SCALE PERTURBATIONS ON A CONTINUOUS INTERFACE [J].
BROUILLETTE, M ;
STURTEVANT, B .
JOURNAL OF FLUID MECHANICS, 1994, 263 :271-292
[5]   Second shock ejecta measurements with an explosively driven two-shockwave drive [J].
Buttler, W. T. ;
Oro, D. M. ;
Olson, R. T. ;
Cherne, F. J. ;
Hammerberg, J. E. ;
Hixson, R. S. ;
Monfared, S. K. ;
Pack, C. L. ;
Rigg, P. A. ;
Stone, J. B. ;
Terrones, G. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (10)
[6]   Simple model for the turbulent mixing width at an ablating surface [J].
Cherfils, C ;
Mikaelian, KO .
PHYSICS OF FLUIDS, 1996, 8 (02) :522-535
[7]   PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF6 interface [J].
Collins, BD ;
Jacobs, JW .
JOURNAL OF FLUID MECHANICS, 2002, 464 (464) :113-136
[8]   The mixing transition in Rayleigh-Taylor instability [J].
Cook, AW ;
Cabot, W ;
Miller, PL .
JOURNAL OF FLUID MECHANICS, 2004, 511 :333-362
[9]   Dependence of turbulent Rayleigh-Taylor instability on initial perturbations [J].
Dimonte, G .
PHYSICAL REVIEW E, 2004, 69 (05) :14
[10]   A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-Group collaboration [J].
Dimonte, G ;
Youngs, DL ;
Dimits, A ;
Weber, S ;
Marinak, M ;
Wunsch, S ;
Garasi, C ;
Robinson, A ;
Andrews, MJ ;
Ramaprabhu, P ;
Calder, AC ;
Fryxell, B ;
Biello, J ;
Dursi, L ;
MacNeice, P ;
Olson, K ;
Ricker, P ;
Rosner, R ;
Timmes, F ;
Tufo, H ;
Young, YN ;
Zingale, M .
PHYSICS OF FLUIDS, 2004, 16 (05) :1668-1693