Surface modification of carbon black nanoparticles enhances photothermal separation and release of CO2

被引:36
作者
Goetz, Samantha A. [1 ]
Nguyen, Du T. [2 ,3 ]
Esser-Kahn, Aaron P. [1 ]
机构
[1] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[3] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
基金
美国国家科学基金会;
关键词
VAPOR GENERATION; OXYGEN; PERFORMANCE; GRAPHENE; FILMS; HEAT;
D O I
10.1016/j.carbon.2016.03.053
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon black nanoparticles (CB) were covalently modified to improve the photothermal regeneration of a CO2 capture nanofluid through decarboxylation. The photothermal release of CO2 addresses high energy costs associated with regenerating capture fluids. By incorporating sulfonamides on the surface of CB, we enhance the photothermal separation of CO2 from MEA by approximately 70% more than the unmodified CB. In contrast, with an anionic sulfonate on the surface, the total CO2 released fell by approximately 60%. We verified the chemical composition and structure of surface modification using complementary techniques including FT-IR, TGA, XPS, and Raman spectroscopy. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:126 / 135
页数:10
相关论文
共 32 条
[1]   Photothermal release of singlet oxygen from gold nanoparticles [J].
Asadirad, Amir Mahmoud ;
Erno, Zach ;
Branda, Neil R. .
CHEMICAL COMMUNICATIONS, 2013, 49 (50) :5639-5641
[2]   SULFONATED POLYANILINE FILMS AS CATION INSERTION ELECTRODES FOR BATTERY APPLICATIONS .1. STRUCTURAL AND ELECTROCHEMICAL CHARACTERIZATION [J].
BARBERO, C ;
MIRAS, MC ;
SCHNYDER, B ;
HAAS, O ;
KOTZ, R .
JOURNAL OF MATERIALS CHEMISTRY, 1994, 4 (12) :1775-1783
[3]   Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy [J].
Bertoti, Imre ;
Mohai, Miklos ;
Laszlo, Krisztina .
CARBON, 2015, 84 :185-196
[4]   The characterization of activated carbons with oxygen and nitrogen surface groups [J].
Biniak, S ;
Szymanski, G ;
Siedlewski, J ;
Swiatkowski, A .
CARBON, 1997, 35 (12) :1799-1810
[5]   Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle [J].
Fang, Zheyu ;
Zhen, Yu-Rong ;
Neumann, Oara ;
Polman, Albert ;
Javier Garcia de Abajo, F. ;
Nordlander, Peter ;
Halas, Naomi J. .
NANO LETTERS, 2013, 13 (04) :1736-1742
[6]   High-Temperature Organic Reactions at Room Temperature Using Plasmon Excitation: Decomposition of Dicumyl Peroxide [J].
Fasciani, Chiara ;
Bueno Alejo, Carlos J. ;
Grenier, Michel ;
Netto-Ferreira, Jose Carlos ;
Scaiano, J. C. .
ORGANIC LETTERS, 2011, 13 (02) :204-207
[7]   Formation of oxygen structures by air activation.: A study by FT-IR spectroscopy [J].
Gómez-Serrano, V ;
Piriz-Almeida, F ;
Durán-Valle, CJ ;
Pastor-Villegas, J .
CARBON, 1999, 37 (10) :1517-1528
[8]   Generating heat with metal nanoparticles [J].
Govorov, Alexander O. ;
Richardson, Hugh H. .
NANO TODAY, 2007, 2 (01) :30-38
[9]   Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances [J].
Govorov, Alexander O. ;
Zhang, Wei ;
Skeini, Timur ;
Richardson, Hugh ;
Lee, Jaebeom ;
Kotov, Nicholas A. .
NANOSCALE RESEARCH LETTERS, 2006, 1 (01) :84-90
[10]   Billion-fold rate enhancement of urethane polymerization via the photothermal effect of plasmonic gold nanoparticles [J].
Haas, Kaitlin M. ;
Lear, Benjamin J. .
CHEMICAL SCIENCE, 2015, 6 (11) :6462-6467