LINEAR FINITE ELEMENT SUPERCONVERGENCE ON SIMPLICIAL MESHES

被引:12
作者
Chen, Jie [1 ]
Wang, Desheng [2 ]
Du, Qiang [3 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
[3] Penn State Univ, University Pk, PA 16802 USA
关键词
Superconvergence; finite element methods; simplicial meshes; edge patches; edge pair condition; CENTROIDAL VORONOI TESSELLATIONS; PATCH RECOVERY; ERROR; QUANTIZATION; SPACE;
D O I
10.1090/S0025-5718-2014-02810-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the linear finite element gradient superconvergence on special simplicial meshes which satisfy an edge pair condition. This special geometric condition implies that for most simplexes in the mesh, the lengths of each pair of opposite edges in each 3-face are assumed to differ only by O(h(1+alpha)) for some constant alpha > 0, with h being the mesh parameter. To analyze the interplant gradient superconvergence, we present a local error expansion formula in general n dimensional space which also motivates the condition on meshes. In the three dimensional space, we show that the gradient of the linear finite element solution u(h) is superconvergent to the gradient of the linear interpolatant u(I) with an order O(h(1+rho)) for 0 < rho <= alpha. Numerical examples are presented to verify the theoretical findings. While we illustrate that tetrahedral meshes satisfying the edge pair condition can often be produced in three dimension, we also show that this may not be the case in higher dimensional spaces.
引用
收藏
页码:2161 / 2185
页数:25
相关论文
共 30 条
[1]   Gradient superconvergence on uniform simplicial partitions of polytopes [J].
Brandts, J ;
Krízek, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (03) :489-505
[2]  
Brandts Jan, 2000, GAKUTO INT MSA, V15, P22
[3]  
Chen CM., 1995, HIGH ACCURACY THEORY
[4]   Three-Dimensional Finite Element Superconvergent Gradient Recovery on Par6 Patterns [J].
Chen, Jie ;
Wang, Desheng .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2010, 3 (02) :178-194
[5]  
Chen L, 2006, INT J NUMER ANAL MOD, V3, P273
[6]  
Crippen G. M., 1988, CHEMOMETRICS SERIES, V15
[7]   The optimal centroidal Voronoi tessellations and the Gersho's conjecture in the three-dimensional space [J].
Du, Q ;
Wang, DS .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (9-10) :1355-1373
[8]   Centroidal Voronoi tessellations: Applications and algorithms [J].
Du, Q ;
Faber, V ;
Gunzburger, M .
SIAM REVIEW, 1999, 41 (04) :637-676
[9]   Recent progress in robust and quality Delaunay mesh generation [J].
Du, Qiang ;
Wang, Desheng .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 195 (1-2) :8-23
[10]  
GERSHO A, 1979, IEEE T INFORM THEORY, V25, P373, DOI 10.1109/TIT.1979.1056067