Joint longitudinal hurdle and time-to-event models: an application related to viral load and duration of the first treatment regimen in patients with HIV initiating therapy

被引:8
作者
Brilleman, Samuel L. [1 ,2 ]
Crowther, Michael J. [3 ,4 ]
May, Margaret T. [5 ]
Gompels, Mark [6 ]
Abrams, Keith R. [3 ]
机构
[1] Monash Univ, Alfred Ctr, Dept Epidemiol & Prevent Med, 99 Commercial Rd, Melbourne, Vic 3004, Australia
[2] Victorian Ctr Biostat ViCBiostat, Melbourne, Vic, Australia
[3] Univ Leicester, Dept Hlth Sci, Adrian Bldg,Univ Rd, Leicester LE1 7RH, Leics, England
[4] Karolinska Inst, Dept Med Epidemiol & Biostat, Box 281, S-17177 Stockholm, Sweden
[5] Univ Bristol, Sch Social & Community Med, Canynge Hall,39 Whatley Rd, Bristol BS8 2PS, Avon, England
[6] North Bristol NHS Trust, Bristol, Avon, England
基金
英国医学研究理事会;
关键词
joint model; shared parameter model; hurdle model; detection limit; censoring; SURVIVAL-DATA; ANTIRETROVIRAL THERAPY; SEMICONTINUOUS DATA; BAYESIAN MODELS; COUNT; ZEROS;
D O I
10.1002/sim.6948
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Shared parameter joint models provide a framework under which a longitudinal response and a time to event can be modelled simultaneously. A common assumption in shared parameter joint models has been to assume that the longitudinal response is normally distributed. In this paper, we instead propose a joint model that incorporates a two-part hurdle' model for the longitudinal response, motivated in part by longitudinal response data that is subject to a detection limit. The first part of the hurdle model estimates the probability that the longitudinal response is observed above the detection limit, whilst the second part of the hurdle model estimates the mean of the response conditional on having exceeded the detection limit. The time-to-event outcome is modelled using a parametric proportional hazards model, assuming a Weibull baseline hazard. We propose a novel association structure whereby the current hazard of the event is assumed to be associated with the current combined (expected) outcome from the two parts of the hurdle model. We estimate our joint model under a Bayesian framework and provide code for fitting the model using the Bayesian software Stan. We use our model to estimate the association between HIV RNA viral load, which is subject to a lower detection limit, and the hazard of stopping or modifying treatment in patients with HIV initiating antiretroviral therapy. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:3583 / 3594
页数:12
相关论文
共 29 条
[1]   Durability of first ART regimen and risk factors for modification, interruption or death in HIV-positive patients starting ART in Europe and North America 2002-2009 [J].
Abgrall, S. ;
Ingle, S. M. ;
May, M. T. ;
Cornish, R. ;
Costagliola, D. ;
Mercie, P. ;
Cavassini, M. ;
Reekie, J. ;
Samji, H. ;
Gill, M. J. ;
Crane, H. M. ;
Tate, J. ;
Sterling, T. R. ;
Antinori, A. ;
Reiss, P. ;
Saag, M. S. ;
Mugavero, M. J. ;
Phillips, A. ;
Manzardo, C. ;
Wasmuth, J. C. ;
Stephan, C. ;
Guest, J. L. ;
Sirvent, J. L. G. ;
Sterne, J. A. C. .
AIDS, 2013, 27 (05) :803-813
[2]   Predicting costs over time using Bayesian Markov chain Monte Carlo methods: An application to early inflammatory polyarthritis [J].
Cooper, Nicola J. ;
Lambert, Paul C. ;
Abrams, Keith R. ;
Sutton, Alexander J. .
HEALTH ECONOMICS, 2007, 16 (01) :37-56
[3]   Joint modelling of longitudinal and survival data: incorporating delayed entry and an assessment of model misspecification [J].
Crowther, Michael J. ;
Andersson, Therese M-L. ;
Lambert, Paul C. ;
Abrams, Keith R. ;
Humphreys, Keith .
STATISTICS IN MEDICINE, 2016, 35 (07) :1193-1209
[4]   Flexible parametric joint modelling of longitudinal and survival data [J].
Crowther, Michael J. ;
Abrams, Keith R. ;
Lambert, Paul C. .
STATISTICS IN MEDICINE, 2012, 31 (30) :4456-4471
[5]   FLEXIBLE REGRESSION-MODELS WITH CUBIC-SPLINES [J].
DURRLEMAN, S ;
SIMON, R .
STATISTICS IN MEDICINE, 1989, 8 (05) :551-561
[6]   Understanding predictive information criteria for Bayesian models [J].
Gelman, Andrew ;
Hwang, Jessica ;
Vehtari, Aki .
STATISTICS AND COMPUTING, 2014, 24 (06) :997-1016
[7]  
Gould AL, 2015, STAT MED, V34, P2181, DOI 10.1002/sim.6141
[8]   Intermittent and sustained low-level HIV viral rebound in patients receiving potent antiretroviral therapy [J].
Greub, G ;
Cozzi-Lepri, A ;
Ledergerber, B ;
Staszewski, S ;
Perrin, L ;
Miller, V ;
Francioli, P ;
Furrer, H ;
Battegay, M ;
Vernazza, P ;
Bernasconi, E ;
Günthard, HF ;
Hirschel, B ;
Phillips, AN ;
Telenti, A .
AIDS, 2002, 16 (14) :1967-1969
[9]   Separate and joint modeling of longitudinal and event time data using standard computer packages [J].
Guo, X ;
Carlin, BP .
AMERICAN STATISTICIAN, 2004, 58 (01) :16-24
[10]   Multilevel Bayesian Models for Survival Times and Longitudinal Patient-Reported Outcomes With Many Zeros [J].
Hatfield, Laura A. ;
Boye, Mark E. ;
Hackshaw, Michelle D. ;
Carlin, Bradley P. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (499) :875-885