Certification of Non-Gaussian States with Operational Measurements

被引:26
作者
Chabaud, Ulysse [1 ,2 ]
Roeland, Ganael [3 ]
Walschaers, Mattia [3 ]
Grosshans, Frederic [2 ]
Parigi, Valentina [3 ]
Markham, Damian [2 ,4 ]
Treps, Nicolas [3 ]
机构
[1] Univ Paris, CNRS, IRIF, Paris, France
[2] Sorbonne Univ, CNRS, LIP6, 4 Pl Jussieu, F-75005 Paris, France
[3] Sorbonne Univ, Coll France, ENS PSL Res Univ, CNRS,Lab Kastler Brossel, 4 Pl Jussieu, F-75252 Paris, France
[4] Univ Tokyo, Natl Inst Informat, JFLI, CNRS, Tokyo, Japan
来源
PRX QUANTUM | 2021年 / 2卷 / 02期
基金
欧洲研究理事会;
关键词
QUANTUM; GENERATION;
D O I
10.1103/PRXQuantum.2.020333
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a theoretical framework for the experimental certification of non-Gaussian features of quantum states using double homodyne detection. We rank experimental non-Gaussian states according to the recently defined stellar hierarchy and we propose practical Wigner negativity witnesses. We simulate various use-cases ranging from fidelity estimation to witnessing Wigner negativity. Moreover, we extend results on the robustness of the stellar hierarchy of non-Gaussian states. Our results illustrate the usefulness of double homodyne detection as a practical measurement scheme for retrieving information about continuous-variable quantum states, and show that certification of high-order non-Gaussian features can be carried out experimentally with current technology.
引用
收藏
页数:19
相关论文
共 50 条
[21]   Dynamics-Based Entanglement Witnesses for Non-Gaussian States of Harmonic Oscillators [J].
Jayachandran, Pooja ;
Zaw, Lin Htoo ;
Scarani, Valerio .
PHYSICAL REVIEW LETTERS, 2023, 130 (16)
[22]   Non-Gaussian swapping of entangled resources [J].
Dell'Anno, Fabio ;
Buono, Daniela ;
Nocerino, Gaetano ;
De Siena, Silvio ;
Illuminati, Fabrizio .
QUANTUM INFORMATION PROCESSING, 2019, 18 (01)
[23]   Genuine Tripartite Non-Gaussian Entanglement [J].
Zhang, Da ;
Barral, David ;
Zhang, Yanpeng ;
Xiao, Min ;
Bencheikh, Kamel .
PHYSICAL REVIEW LETTERS, 2023, 130 (09)
[24]   Resource theory of non-Gaussian operations [J].
Zhuang, Quntao ;
Shor, Peter W. ;
Shapiro, Jeffrey H. .
PHYSICAL REVIEW A, 2018, 97 (05)
[25]   Theoretical and experimental study of quantum coherent superpositions and of non-Gaussian entangled states of the light [J].
Ourjoumtsev, A. .
ANNALES DE PHYSIQUE, 2007, 32 (4-5) :1-+
[26]   Classical simulation of non-Gaussian fermionic circuits [J].
Dias, Beatriz ;
Koenig, Robert .
QUANTUM, 2024, 8 :1-68
[27]   Hierarchy of quantum non-Gaussian conservative motion [J].
Moore, Darren W. ;
Filip, Radim .
COMMUNICATIONS PHYSICS, 2022, 5 (01)
[28]   Non-Gaussian Waves in Seba's Billiard [J].
Kurlberg, Par ;
Ueberschar, Henrik .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (02) :932-955
[29]   Quantum non-Gaussian coherences of an oscillating atom [J].
Kovalenko, A. ;
Lachman, L. ;
Pham, T. ;
Singh, K. ;
Cip, O. ;
Fiurasek, J. ;
Slodicka, L. ;
Filip, R. .
PHYSICAL REVIEW RESEARCH, 2025, 7 (03)
[30]   Efficient Quantification of Non-Gaussian Spin Distributions [J].
Dubost, B. ;
Koschorreck, M. ;
Napolitano, M. ;
Behbood, N. ;
Sewell, R. J. ;
Mitchell, M. W. .
PHYSICAL REVIEW LETTERS, 2012, 108 (18)