Semi-Supervised Discriminant Feature Selection for Hyperspectral Imagery Classification

被引:0
|
作者
Dong, Chunhua [1 ]
Naghedolfeizi, Masoud [1 ]
Aberra, Dawit [1 ]
Zeng, Xiangyan [1 ]
机构
[1] Ft Valley State Univ, Dept Math & Comp Sci, 1005 State Univ Dr, Ft Valley, GA 31030 USA
来源
ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY XXV | 2019年 / 10986卷
关键词
Sparse Representation; Image Classification; Dimensionality Reduction; Hyperspectral Imagery; Feature Selection; Laplacian Eigenspace; Semi-Supervised Learning;
D O I
10.1117/12.2519204
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Sparse representation classification (SRC) is being widely applied for target detection in hyperspectral images (HSI). However, due to the problem of the curse of dimensionality and redundant information in HSI, SRC methods fail to achieve high classification performance via a large number of spectral bands. Selecting a subset of predictive features in a high-dimensional space is a challenging problem for hyperspectral image classification. In this paper, we propose a novel discriminant feature selection (DFS) method for hyperspectral image classification in the eigenspace. Firstly, our proposed DFS method selects a subset of discriminant features by solving the combination of spectral and spatial hypergraph Laplacian quadratic problem, which can preserve the intrinsic structure of the unlabeled pixels as well as both the inter-class and intra-class constraints defined on the labeled pixels in the projected low-dimensional eigenspace. Then, in order to further improve the classification performance of SRC, we exploit the well-known simultaneous orthogonal matching pursuit (SOMP) algorithm to obtain the sparse representation of the pixels by incorporating the interpixel correlation within the classical OMP by assuming that neighboring pixels usually consist of similar materials. Finally, the recovered sparse errors are directly used for determining the label of the pixels. The extracted discriminant features are compatibly used in conjunction with the established SRC methods, and can significantly improve their performance for HSI classification. Experiments conducted with the hyperspectral data sets and different experimental settings show that our proposed method increases the classification accuracy and outperforms the state-of-the-art feature selection and classification methods.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Adaptive Feature Selection and Feature Fusion for Semi-supervised Classification
    Du, Wei
    Phlypo, Ronald
    Adali, Tulay
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2019, 91 (05): : 521 - 537
  • [12] Adaptive Feature Selection and Feature Fusion for Semi-supervised Classification
    Wei Du
    Ronald Phlypo
    Tülay Adalı
    Journal of Signal Processing Systems, 2019, 91 : 521 - 537
  • [13] Semi-supervised local feature selection for data classification
    Zechao Li
    Jinhui Tang
    Science China Information Sciences, 2021, 64
  • [14] Semi-supervised local feature selection for data classification
    Zechao LI
    Jinhui TANG
    ScienceChina(InformationSciences), 2021, 64 (09) : 127 - 138
  • [15] Semi-supervised local feature selection for data classification
    Li, Zechao
    Tang, Jinhui
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (09)
  • [16] An Improved Semi-supervised Local Discriminant Analysis for Feature Extraction of Hyperspectral Image
    Luo, Renbo
    Liao, Wenzhi
    Philips, Wilfried
    Pi, Youguo
    2015 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2015,
  • [17] Hyperspectral Imagery Classification Based on Semi-Supervised Broad Learning System
    Kong, Yi
    Wang, Xuesong
    Cheng, Yuhu
    Chen, C. L. Philip
    REMOTE SENSING, 2018, 10 (05):
  • [18] Classification Oriented Semi-supervised Band Selection for Hyperspectral Images
    Bai, Jun
    Xiang, Shiming
    Pan, Chunhong
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 1888 - 1891
  • [19] SEMI-SUPERVISED LOCAL DISCRIMINANT ANALYSIS WITH NEAREST NEIGHBORS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Chang, Chih-Sheng
    Chen, Kai-Ching
    Kuo, Bor-Chen
    Wang, Min-Shian
    Li, Cheng-Hsuan
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1709 - 1712
  • [20] BASSUM: A Bayesian semi-supervised method for classification feature selection
    Cai, Ruichu
    Zhang, Zhenjie
    Hao, Zhifeng
    PATTERN RECOGNITION, 2011, 44 (04) : 811 - 820