Gamma Calculus Beyond Villani and Explicit Convergence Estimates for Langevin Dynamics with Singular Potentials

被引:18
作者
Baudoin, Fabrice [1 ]
Gordina, Maria [1 ]
Herzog, David P. [2 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Iowa State Univ, Dept Math, Ames, IA 50311 USA
关键词
ERGODICITY; HYPOCOERCIVITY; LYAPUNOV;
D O I
10.1007/s00205-021-01664-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply Gamma calculus to the hypoelliptic and non-symmetric setting of Langevin dynamics under general conditions on the potential. This extension allows us to provide explicit estimates on the convergence rate (which is exponential) to equilibrium for the dynamics in a weighted H-1(mu) sense, mu denoting the unique invariant probability measure of the system. The general result holds for singular potentials, such as the well-known Lennard-Jones interaction and confining well, and it is applied in such a case to estimate the rate of convergence when the number of particles N in the system is large.
引用
收藏
页码:765 / 804
页数:40
相关论文
共 30 条
[1]   Propagating Lyapunov functions to prove noise-induced stabilization [J].
Athreya, Avanti ;
Kolba, Tiffany ;
Mattingly, Jonathan C. .
ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 :1-38
[2]   Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincare [J].
Bakry, Dorninique ;
Cattiaux, Patrick ;
Guillin, Arnaud .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (03) :727-759
[3]   Bakry-Emery meet Villani [J].
Baudoin, Fabrice .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (07) :2275-2291
[4]   Construction, ergodicity and rate of convergence of N-particle Langevin dynamics with singular potentials [J].
Conrad, Florian ;
Grothaus, Martin .
JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (03) :623-662
[5]   GEOMETRIC ERGODICITY OF TWO-DIMENSIONAL HAMILTONIAN SYSTEMS WITH A LENNARD-JONES-LIKE REPULSIVE POTENTIAL [J].
Cooke, Ben ;
Herzog, David P. ;
Mattingly, Jonathan C. ;
McKinley, Scott A. ;
Schmidler, Scott C. .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (07) :1987-2025
[6]   HYPOCOERCIVITY FOR LINEAR KINETIC EQUATIONS CONSERVING MASS [J].
Dolbeault, Jean ;
Mouhot, Clement ;
Schmeiser, Christian .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (06) :3807-3828
[7]   COUPLINGS AND QUANTITATIVE CONTRACTION RATES FOR LANGEVIN DYNAMICS [J].
Eberle, Andreas ;
Guillin, Arnaud ;
Zimmer, Raphael .
ANNALS OF PROBABILITY, 2019, 47 (04) :1982-2010
[8]   QUANTITATIVE HARRIS-TYPE THEOREMS FOR DIFFUSIONS AND MCKEAN VLASOV PROCESSES [J].
Eberle, Andreas ;
Guillin, Arnaud ;
Zimmer, Raphael .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (10) :7135-7173
[9]   A Hypocoercivity Related Ergodicity Method for Singularly Distorted Non-Symmetric Diffusions [J].
Grothaus, Martin ;
Stilgenbauer, Patrik .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 83 (03) :331-379
[10]  
Hairer M, 2011, PROG PROBAB, V63, P109