Higher Cech theory

被引:8
作者
Beke, T [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
来源
K-THEORY | 2004年 / 32卷 / 04期
关键词
Cech technology; Grothendieck topos; groupoids;
D O I
10.1007/s10977-004-0840-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a notion of 'cover of level n' for a topological space, or more generally any Grothendieck site, with the key property that simplicial homotopy classes computed along the filtered diagram of n-covers biject with global homotopy classes when the target is an n-type. When the target is an Eilenberg-MacLane sheaf, this specializes to computing derived functor cohomology, up to degree n, via simplicial homotopy classes taken along n-covers. Our approach is purely simplicial and combinatorial.
引用
收藏
页码:293 / 322
页数:30
相关论文
共 18 条
  • [1] ADAMEK J, 1994, LONDON MATH SOC MATH, V189
  • [2] Artin M., 1969, LECT NOTES MATH, V100
  • [3] Borceux F., 1994, Handbook of Categorical Algebra, Encyclopedia of Mathematics and its Applications, V1
  • [4] DUGGER D, IN PRESS MATH P CAMB
  • [5] DUSKIN J, 1979, LECT NOTES MATH, V753, P255
  • [6] Duskin J. W., 2001, Theory Appl. Categ, V9, P198
  • [7] DUSKIN JW, 1988, LECT NOTES MATH, V1348, P107
  • [8] Gabriel P., 1967, CALCULUS FRACTIONS H
  • [9] GLENN PG, 1982, J PURE APPL ALGEBRA, V25, P33, DOI 10.1016/0022-4049(82)90094-9
  • [10] Godement R., 1958, TOPOLOGIE ALGEBRIQUE