Singly diagonally implicit Runge-Kutta methods combining line search techniques for unconstrained optimization

被引:0
作者
Luo, XL [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Informat Engn, Beijing 100876, Peoples R China
关键词
global convergence; superlinear convergence; Runge-Kutta method; unconstrained optimization;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There exists a strong connection between numerical methods for the integration of ordinary differential equations and optimization problems. In this paper, we try to discover further their links. And we transform unconstrained problems to the equivalent ordinary differential equations and construct the LRKOPT method to solve them by combining the second order singly diagonally implicit Runge-Kutta formulas and line search techniques. Moreover we analyze the global convergence and the local convergence of the LRKOPT method. Promising numerical results are also reported.
引用
收藏
页码:153 / 164
页数:12
相关论文
共 35 条
[21]  
Luo Xinlong, 2003, Mathematica Numerica Sinica, V25, P177
[22]  
LUO XL, 2001, THESIS I COMPUTATION
[23]  
Marquardt D. W., 1963, SIAM J APPL MATH, V11, P431, DOI [DOI 10.1137/0111030, 10.1137/0111030]
[24]  
More J.J., 1983, MATH PROGRAMMING STA, P258
[25]  
MORE JJ, 1981, ACM T MATH SOFTWARE, V7, P17, DOI 10.1145/355934.355936
[26]  
Nocedal J., 1998, Combining trust region and line search techniques, P153
[27]  
Powell M. J. D., 1976, SIAM AMS P, V9, P53
[28]  
POWELL MJD, 1981, NONLINEAR OPTIMIZATI, P59
[29]   A TRAJECTORY-FOLLOWING METHOD FOR UNCONSTRAINED OPTIMIZATION [J].
SCHAFFLER, S ;
WARSITZ, H .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1990, 67 (01) :133-140
[30]   A note on minimization problems and multistep methods [J].
Schropp, J .
NUMERISCHE MATHEMATIK, 1997, 78 (01) :87-101