Laser-Generated Bimetallic Ag-Au and Ag-Cu Core-Shell Nanoparticles for Refractive Index Sensing

被引:47
作者
Navas, M. P. [1 ]
Soni, R. K. [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Phys, New Delhi 110016, India
关键词
Refractive index sensing; Pulsed laser ablation in liquid; Ag nanoparticles; Bimetallic core-shell nanoparticles; Plasmon hybridization; SURFACE-PLASMON RESONANCE; SILVER NANOPARTICLES; GOLD; SHAPE; SIZE; SENSITIVITY; NANOSTRUCTURES; ABLATION;
D O I
10.1007/s11468-014-9854-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Localized surface plasmon resonance (LSPR) wavelength of Ag, Au, and Cu nanoparticles (NPs) falls in visible region and is highly sensitive to size, shape, and surrounding medium. Refractive index sensitivity (RIS) and figure-of-merit (FOM) of Ag, Au, and Cu are analyzed for different particle sizes using the quasi-static Mie theory. The simulation results reveal that RIS and FOM of Ag NPs are higher than Au and Cu NPs. Bimetallic Ag-Au and Ag-Cu core-shell NPs exhibit two resonance peaks, corresponding to hybridization of core and nanoshell plasmon modes, are investigated for simultaneous sensing in two widely separated wavelength regions. A sequential laser ablation method is used to generate bimetallic Ag-Au and Ag-Cu core-shell NPs in liquid medium, and their LSPR peak shift and broadening are monitored in different refractive index liquids. Laser-generated Ag-Au NPs with Au shell of 1-2 nm show optimum RIS and FOM in lower-wavelength Ag plasmon channel. The Au shell not only improves the chemical stability of Ag NPs but also increases the index sensitivity at an optimum thickness. Further, in higher-wavelength Au plasmon channel, both RIS and FOM increase with shell thickness, but their values are lower than those in Ag plasmon channel.
引用
收藏
页码:681 / 690
页数:10
相关论文
共 45 条
  • [31] Gram Scale Synthesis of Pure Ceramic Nanoparticles by Laser Ablation in Liquid
    Sajti, Csaba Laszlo
    Sattari, Ramin
    Chichkov, Boris N.
    Barcikowski, Stephan
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (06) : 2421 - 2427
  • [32] Singh R., 2013, J NANOSCI LETT, V3, P11
  • [33] Plasmonics properties of trimetallic Al@Al2O3@Ag@Au and Al@Al2O3@AuAg nanostructures
    Singh, Rina
    Soni, R. K.
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2014, 116 (03): : 955 - 967
  • [34] Nanostructured plasmonic sensors
    Stewart, Matthew E.
    Anderton, Christopher R.
    Thompson, Lucas B.
    Maria, Joana
    Gray, Stephen K.
    Rogers, John A.
    Nuzzo, Ralph G.
    [J]. CHEMICAL REVIEWS, 2008, 108 (02) : 494 - 521
  • [35] Weihong Shi, 2012, ISRN Nanomaterials, DOI 10.5402/2012/659043
  • [36] Plasmon hybridization in nanoshells with a nonconcentric core
    Wu, Yanpeng
    Nordlander, Peter
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (12)
  • [37] Ultrahigh refractive index sensing performance of plasmonic quadrupole resonances in gold nanoparticles
    Yong, Zehui
    Lei, Dang Yuan
    Lam, Chi Hang
    Wang, Yu
    [J]. NANOSCALE RESEARCH LETTERS, 2014, 9 : 1 - 6
  • [38] Nano-optics of surface plasmon polaritons
    Zayats, AV
    Smolyaninov, II
    Maradudin, AA
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 408 (3-4): : 131 - 314
  • [39] Nanomaterials via Laser Ablation/Irradiation in Liquid: A Review
    Zeng, Haibo
    Du, Xi-Wen
    Singh, Subhash C.
    Kulinich, Sergei A.
    Yang, Shikuan
    He, Jianping
    Cai, Weiping
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (07) : 1333 - 1353
  • [40] A Review on Functionalized Gold Nanoparticles for Biosensing Applications
    Zeng, Shuwen
    Yong, Ken-Tye
    Roy, Indrajit
    Dinh, Xuan-Quyen
    Yu, Xia
    Luan, Feng
    [J]. PLASMONICS, 2011, 6 (03) : 491 - 506