Laser-Generated Bimetallic Ag-Au and Ag-Cu Core-Shell Nanoparticles for Refractive Index Sensing

被引:47
|
作者
Navas, M. P. [1 ]
Soni, R. K. [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Phys, New Delhi 110016, India
关键词
Refractive index sensing; Pulsed laser ablation in liquid; Ag nanoparticles; Bimetallic core-shell nanoparticles; Plasmon hybridization; SURFACE-PLASMON RESONANCE; SILVER NANOPARTICLES; GOLD; SHAPE; SIZE; SENSITIVITY; NANOSTRUCTURES; ABLATION;
D O I
10.1007/s11468-014-9854-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Localized surface plasmon resonance (LSPR) wavelength of Ag, Au, and Cu nanoparticles (NPs) falls in visible region and is highly sensitive to size, shape, and surrounding medium. Refractive index sensitivity (RIS) and figure-of-merit (FOM) of Ag, Au, and Cu are analyzed for different particle sizes using the quasi-static Mie theory. The simulation results reveal that RIS and FOM of Ag NPs are higher than Au and Cu NPs. Bimetallic Ag-Au and Ag-Cu core-shell NPs exhibit two resonance peaks, corresponding to hybridization of core and nanoshell plasmon modes, are investigated for simultaneous sensing in two widely separated wavelength regions. A sequential laser ablation method is used to generate bimetallic Ag-Au and Ag-Cu core-shell NPs in liquid medium, and their LSPR peak shift and broadening are monitored in different refractive index liquids. Laser-generated Ag-Au NPs with Au shell of 1-2 nm show optimum RIS and FOM in lower-wavelength Ag plasmon channel. The Au shell not only improves the chemical stability of Ag NPs but also increases the index sensitivity at an optimum thickness. Further, in higher-wavelength Au plasmon channel, both RIS and FOM increase with shell thickness, but their values are lower than those in Ag plasmon channel.
引用
收藏
页码:681 / 690
页数:10
相关论文
共 50 条
  • [1] Laser-Generated Bimetallic Ag-Au and Ag-Cu Core-Shell Nanoparticles for Refractive Index Sensing
    M. P. Navas
    R. K. Soni
    Plasmonics, 2015, 10 : 681 - 690
  • [2] Modeling the Phase Stability of Janus, Core-Shell, and Alloyed Ag-Cu and Ag-Au Nanoparticles
    Peng, Hongcheng
    Qi, Weihong
    Li, Siqi
    Ji, Wenhai
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (04): : 2186 - 2195
  • [3] Laser generated Ag and Ag-Au composite nanoparticles for refractive index sensor
    Navas, M. P.
    Soni, R. K.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2014, 116 (03): : 879 - 886
  • [4] Phase transfer identification of core-shell structures in Ag-Au bimetallic nanoparticles
    Yang, J
    Lee, JY
    Chen, LX
    Too, HP
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2005, 5 (07) : 1095 - 1100
  • [5] Fabrication of Bimetallic Core-Shell and Alloy Ag-Au Nanoparticles on a DNA Template
    Taniguchi, Shota
    Zinchenko, Anatoly
    Murata, Shizuaki
    CHEMISTRY LETTERS, 2016, 45 (06) : 610 - 612
  • [6] Martensitic transformations in Ag-Au bimetallic core-shell nanoalloys
    Chen, Fuyi
    Johnston, Roy L.
    APPLIED PHYSICS LETTERS, 2008, 92 (02)
  • [7] Preparation of Au-Ag, Ag-Au core-shell bimetallic nanoparticles for surface-enhanced Raman scattering
    Yang, Yong
    Shi, Jianlin
    Kawamura, Go
    Nogami, Masayuki
    SCRIPTA MATERIALIA, 2008, 58 (10) : 862 - 865
  • [8] Thermal stability of Ag-Au, Cu-Au, and Ag-Cu bimetallic nanoparticles supported on highly oriented pyrolytic graphite
    Bukhtiyarov, A. V.
    Prosvirin, I. P.
    Chetyrin, I. A.
    Saraev, A. A.
    Kaichev, V. V.
    Bukhtiyarov, V. I.
    KINETICS AND CATALYSIS, 2016, 57 (05) : 704 - 711
  • [9] Laser generated Ag and Ag–Au composite nanoparticles for refractive index sensor
    M. P. Navas
    R. K. Soni
    Applied Physics A, 2014, 116 : 879 - 886
  • [10] Experimental and theoretical studies on sensing adenine by Ag, Au and Ag-Au bimetallic nanoparticles
    Arikrishnan, J.
    Sheerin, S. K. Tabasum
    Murugavelu, M.
    Karthikeyan, B.
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 2011, 50 (01): : 46 - 50