Gaussian bounds and collisions of variable speed random walks on lattices with power law conductances

被引:4
|
作者
Chen, Xinxing [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
关键词
Random walks; Heat kernel; Gaussian bound; Collisions; Intrinsic metric; PARABOLIC HARNACK INEQUALITY; MARKOV-CHAINS; UNBOUNDED CONDUCTANCES; DIRICHLET FORMS; HEAT KERNELS; GRAPHS; MODEL; PRINCIPLE; THEOREM;
D O I
10.1016/j.spa.2016.03.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a weighted lattice Z(d) with conductance mu(e) =vertical bar e vertical bar(-alpha). We show that the heat kernel of a variable speed random walk on it satisfies a two-sided Gaussian bound by using an intrinsic metric. We also show that when d = 2 and alpha is an element of (-1, 0), two independent random walks on such weighted lattice will collide infinitely many times while they are transient. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:3041 / 3064
页数:24
相关论文
共 9 条
  • [1] On the speed of Random Walks among Random Conductances
    Berger, Noam
    Salvi, Michele
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (02): : 1063 - 1083
  • [2] Gaussian upper bounds for heat kernels of continuous time simple random walks
    Folz, Matthew
    ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 1693 - 1722
  • [3] Heat kernel estimates and intrinsic metric for random walks with general speed measure under degenerate conductances
    Andres, Sebastian
    Deuschel, Jean-Dominique
    Slowik, Martin
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
  • [4] Random walks crossing power law boundaries
    Kesten, H
    Maller, RA
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 1998, 34 (1-3) : 219 - 252
  • [5] Stability and instability of Gaussian heat kernel estimates for random walks among time-dependent conductances
    Huang, Ruojun
    Kumagai, Takashi
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2016, 21
  • [6] Passage times of random walks and Levy processes across power law boundaries
    Doney, RA
    Maller, RA
    PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (01) : 57 - 70
  • [7] Passage times of random walks and Lévy processes across power law boundaries
    R.A. Doney
    R.A. Maller
    Probability Theory and Related Fields, 2005, 133 : 57 - 70
  • [8] Power-Law Graphs Have Minimal Scaling of Kemeny Constant for Random Walks
    Xu, Wanyue
    Sheng, Yibin
    Zhang, Zuobai
    Kan, Haibin
    Zhang, Zhongzhi
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 46 - 56
  • [9] Critical spreading dynamics of parity conserving annihilating random walks with power-law branching
    Laise, T.
    dos Anjos, F. C.
    Argolo, C.
    Lyra, M. L.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 505 : 648 - 654