A recurrence network-based convolutional neural network for fatigue driving detection from EEG

被引:54
|
作者
Gao, Zhong-Ke [1 ]
Li, Yan-Li [1 ]
Yang, Yu-Xuan [1 ]
Ma, Chao [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
TIME-SERIES; COMPLEX NETWORKS; BRAIN; VARIABILITY; SLEEPINESS; PERFORMANCE; FREQUENCY; WORKLOAD;
D O I
10.1063/1.5120538
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Driver fatigue is an important cause of traffic accidents, which has triggered great concern for detecting drivers' fatigue. Numerous methods have been proposed to fulfill this challenging task, including feature methods and machine learning methods. Recently, with the development of deep learning techniques, many studies achieved better results than traditional feature methods, and the combination of traditional methods and deep learning techniques gradually received attention. In this paper, we propose a recurrence network-based convolutional neural network (RN-CNN) method to detect fatigue driving. To be specific, we first conduct a simulated driving experiment to collect electroencephalogram (EEG) signals of subjects under alert state and fatigue state. Then, we construct the multiplex recurrence network (RN) from EEG signals to fuse information from the original time series. Finally, CNN is employed to extract and learn the features of a multiplex RN for realizing a classification task. The results indicate that the proposed RN-CNN method can achieve an average accuracy of 92.95%. To verify the effectiveness of our method, some existing competitive methods are compared with ours. The results show that our method outperforms the existing methods, which demonstrate the effect of the RN-CNN method. Published under license by AIP Publishing.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Research on Fatigue Driving Detection Method Based on Lightweight Convolutional Neural Network
    Xu, Xiao-wei
    Liu, Chang-ran
    Yu, Xue-jing
    Xiong, Hao
    Qian, Feng
    2020 IEEE 5TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING (IEEE ICITE 2020), 2020, : 254 - 258
  • [2] Generative adversarial network and convolutional neural network-based EEG imbalanced classification model for seizure detection
    Gao, Bin
    Zhou, Jiazheng
    Yang, Yuying
    Chi, Jinxin
    Yuan, Qi
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (01) : 1 - 15
  • [3] Convolutional neural network based on recurrence plot for EEG recognition
    Hao, Chongqing
    Wang, Ruiqi
    Li, Mengyu
    Ma, Chao
    Cai, Qing
    Gao, Zhongke
    CHAOS, 2021, 31 (12)
  • [4] EEG Classification via Convolutional Neural Network-Based Interictal Epileptiform Event Detection
    Thomas, John
    Comoretto, Luca
    Jin, Jing
    Dauwels, Justin
    Cash, Sydney S.
    Westover, M. Brandon
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 3148 - 3151
  • [5] Convolutional Neural Network-Based Discriminator for Outlier Detection
    Alharbi, Fahad
    El Hindi, Khalil
    Al Ahmadi, Saad
    Alsalamn, Hussien
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [6] Convolutional neural network-based surgical instrument detection
    Cai, Tongbiao
    Zhao, Zijian
    TECHNOLOGY AND HEALTH CARE, 2020, 28 : S81 - S88
  • [7] Convolutional Neural Network-Based EEG Signal Analysis: A Systematic Review
    Rajwal, Swati
    Aggarwal, Swati
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (06) : 3585 - 3615
  • [8] Convolutional Neural Network-Based EEG Signal Analysis: A Systematic Review
    Swati Rajwal
    Swati Aggarwal
    Archives of Computational Methods in Engineering, 2023, 30 : 3585 - 3615
  • [9] ForensicNet: Modern convolutional neural network-based image forgery detection network
    Tyagi, Shobhit
    Yadav, Divakar
    JOURNAL OF FORENSIC SCIENCES, 2023, 68 (02) : 461 - 469
  • [10] Convolutional neural network-based fast seizure detection from video electroencephalograms
    Chou, Chi-Hsiang
    Shen, Tsu-Wang
    Tung, Hsin
    Hsieh, Peiyuan F.
    Kuo, Chih-En
    Chen, Ting-Mao
    Yang, Chao-Wei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 80