Predicting protein-protein interactions from primary structure

被引:423
作者
Bock, JR [1 ]
Gough, DA [1 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
关键词
D O I
10.1093/bioinformatics/17.5.455
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: An ambitious goal of proteomics is to elucidate the structure, interactions and functions of ail proteins within cells and organisms. The expectation is that this will provide a fuller appreciation of cellular processes and networks at the protein level, ultimately leading to a better understanding of disease mechanisms and suggesting new means for intervention. This paper addresses the question: can protein-protein interactions be predicted directly from primary structure and associated data? Using a diverse database of known protein interactions, a Support Vector Machine (SVM) learning system was trained to recognize and predict interactions based solely on primary structure and associated physicochemical properties. Results: Inductive accuracy of the trained system, defined here as the percentage of correct protein interaction predictions for previously unseen test sets, averaged 80% for the ensemble of statistical experiments. Future proteomics studies may benefit from this research by proceeding directly from the automated identification of a cell's gene products to prediction of protein interaction pairs.
引用
收藏
页码:455 / 460
页数:6
相关论文
共 42 条
[1]   PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS [J].
ANFINSEN, CB .
SCIENCE, 1973, 181 (4096) :223-230
[2]   Assessing the accuracy of prediction algorithms for classification: an overview [J].
Baldi, P ;
Brunak, S ;
Chauvin, Y ;
Andersen, CAF ;
Nielsen, H .
BIOINFORMATICS, 2000, 16 (05) :412-424
[3]  
BALDI P, 1998, ADAPTIVE COMPUTATION
[4]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]
[5]   Proteomics: quantitative and physical mapping of cellular proteins [J].
Blackstock, WP ;
Weir, MP .
TRENDS IN BIOTECHNOLOGY, 1999, 17 (03) :121-127
[6]  
Brown MPS., 1999, UCSCCRL9909
[7]   A METHOD TO PREDICT FUNCTIONAL RESIDUES IN PROTEINS [J].
CASARI, G ;
SANDER, C ;
VALENCIA, A .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (02) :171-178
[8]  
Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
[9]   Shufflers:: shuffling sequences while conserving the k-let counts [J].
Coward, E .
BIOINFORMATICS, 1999, 15 (12) :1058-1059
[10]   The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions [J].
Das, AK ;
Cohen, PTW ;
Barford, D .
EMBO JOURNAL, 1998, 17 (05) :1192-1199