Mode Recognition of Rectangular Dielectric Resonator Antenna Using Artificial Neural Network

被引:7
作者
Xiao, Yuqi [1 ,2 ,3 ]
Leung, Kwok Wa [1 ,2 ,3 ]
Lu, Kai [4 ,5 ]
Leung, Chi-Sing [2 ]
机构
[1] City Univ Hong Kong, State Key Lab Terahertz & Millimeter Waves, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
[3] CityU Shenzhen Res Inst, Shenzhen Key Lab Millimeter Wave & Wideband Wirel, Shenzhen 518057, Peoples R China
[4] Sun Yat Sen Univ, Guangdong Prov Key Lab Optoelect Informat Proc Ch, Guangzhou 510006, Peoples R China
[5] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510006, Peoples R China
关键词
Artificial neural networks; Neurons; Training; Antenna measurements; Resonant frequency; Dielectric resonator antennas; Optical resonators; Artificial intelligence (AI); artificial neural network (ANN); dielectric resonator antenna (DRA); mode recognition; particle swarm optimization (PSO); resonant mode; PARTICLE SWARM OPTIMIZATION;
D O I
10.1109/TAP.2022.3146860
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new method powered by an artificial neural network (ANN) is studied for resonant-mode recognitions of a rectangular dielectric resonator antenna (DRA). Different rectangular DRAs were simulated with ANSYS HFSS to generate a large dataset for training the model. Their resonance frequencies, dimensions, and 3-D electric fields are input to the ANN. The output end is a 12-element array representing the corresponding probabilities of 12 different resonant modes. Using this trained ANN model, the mode recognition accuracy can reach 96.74%. Apart from identifying the resonant modes, our proposed approach can suggest how to modify a rectangular DRA to improve the purity of a resonant mode for better antenna performance.
引用
收藏
页码:5209 / 5216
页数:8
相关论文
共 21 条
[1]  
Akinsolu MO, 2020, PROC EUR CONF ANTENN
[2]   Prediction of electromagnetic field patterns of optical waveguide using neural network [J].
Alagappan, Gandhi ;
Png, Ching Eng .
NEURAL COMPUTING & APPLICATIONS, 2021, 33 (07) :2195-2206
[3]  
Erricolo D, 2019, PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), P1377, DOI [10.1109/iceaa.2019.8879110, 10.1109/ICEAA.2019.8879110]
[4]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[5]   Biodegradation and decolourization of methyl red by Aspergillus versicolor LH1 [J].
Hu, Cui Ying ;
Cheng, Hong Ying ;
Yao, Xue Mei ;
Li, Liang Zhi ;
Liu, Heng Wei ;
Guo, Wei Qiang ;
Yan, Li Shi ;
Fu, Jiao Long .
PREPARATIVE BIOCHEMISTRY & BIOTECHNOLOGY, 2021, 51 (07) :642-649
[6]   Compact Wideband Folded Dipole Antenna With Multi-Resonant Modes [J].
Hu, Wei ;
Liu, Xuekang ;
Gao, Steven ;
Wen, Lehu ;
Luo, Qi ;
Fei, Peng ;
Yin, Yingzeng ;
Liu, Ying .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (11) :6789-6799
[7]   Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations [J].
Jin, Nanbo ;
Rahmat-Samii, Yahya .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (03) :556-567
[8]   Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1026-1034
[9]  
Li Yandong, 2016, Journal of Computer Applications, V36, P2508, DOI 10.11772/j.issn.1001-9081.2016.09.2508
[10]  
Liu WY, 2016, PR MACH LEARN RES, V48