Physiological and molecular responses to drought stress in teak (Tectona grandis L.f.)

被引:33
|
作者
Galeano, Esteban [1 ]
Vasconcelos, Tarcisio Sales [1 ]
de Oliveira, Perla Novais [1 ]
Carrer, Helaine [1 ]
机构
[1] Univ Sao Paulo, Luiz de Queiroz Coll Agr ESALQ, Dept Biol Sci, Piracicaba, Brazil
来源
PLOS ONE | 2019年 / 14卷 / 09期
基金
巴西圣保罗研究基金会;
关键词
EXPRESSION ANALYSIS; ABIOTIC STRESS; WATER-STRESS; STOMATAL CONDUCTANCE; OSMOTIC ADJUSTMENT; GENETIC-STRUCTURE; CELL-DEATH; LINN; F; PLANTS; TOLERANCE;
D O I
10.1371/journal.pone.0221571
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Drought stress is an increasingly common and worrying phenomenon because it causes a loss of production in both agriculture and forestry. Teak is a tropical tree which needs alternating rainy and dry seasons to produce high-quality wood. However, a robust understanding about the physiological characteristics and genes related to drought stress in this species is lacking. Consequently, after applying moderate and severe drought stress to teak seedlings, an infrared gas analyzer (IRGA) was used to measure different parameters in the leaves. Additionally, using the root transcriptome allowed finding and analyzing the expression of several drought-related genes. As a result, in both water deficit treatments a reduction in photosynthesis, transpiration, stomatal conductance and leaf relative water content was found. As well, an increase in free proline levels and intrinsic water use efficiency was found when compared to the control treatment. Furthermore, 977 transcripts from the root contigs showed functional annotation related to drought stress, and of these, TgTPS1, TgDREB1, TgAREB1 and TgPIP1 were selected. The expression analysis of those genes along with TgHSP1, TgHSP2, TgHSP3 and TgBI (other stress-related genes) showed that with moderate treatment, TgTPS1, TgDREB1, TgAREB1, TgPIP1, TgHSP3 and TgBI genes had higher expression than the control treatment, but with severe treatment only TgTPS1 and TgDREB1 showed higher expression than the control treatment. At the end, a schematic model for the physiological and molecular strategies under drought stress in teak from this study is provided. In conclusion, these physiological and biochemical adjustments in leaves and genetic changes in roots under severe and prolonged water shortage situations can be a limiting factor for teak plantlets' growth. Further studies of those genes under different biotic and abiotic stress treatments are needed.
引用
收藏
页数:26
相关论文
共 50 条
  • [11] Physiological and molecular responses to drought in Petunia: the importance of stress severity
    Kim, Jongyun
    Malladi, Anish
    van Iersel, Marc W.
    JOURNAL OF EXPERIMENTAL BOTANY, 2012, 63 (18) : 6335 - 6345
  • [12] Morphological, physiological and biochemical responses to drought stress of Stone pine (Pinus pinea L.) seedlings
    Deligoz, Ayse
    Gur, Merve
    ACTA PHYSIOLOGIAE PLANTARUM, 2015, 37 (11)
  • [13] Influence of soil characteristics on teak (Tectona grandis L. f.) establishment and early growth in tropical Northern Australia
    Wehr, J. Bernhard
    Smith, Tim E.
    Menzies, Neal W.
    JOURNAL OF FOREST RESEARCH, 2017, 22 (03) : 153 - 159
  • [14] Diversity and genetic structure of teak (Tectona grandis L.f) in its natural range using DNA microsatellite markers
    Fofana, Inza Jesus
    Ofori, Daniel
    Poitel, Mireille
    Verhaegen, Daniel
    NEW FORESTS, 2009, 37 (02) : 175 - 195
  • [15] Physiological and molecular responses to drought and salinity in soybean
    Liu, H. R.
    Sun, G. W.
    Dong, L. J.
    Yang, L. Q.
    Yu, S. N.
    Zhang, S. L.
    Liu, J. F.
    BIOLOGIA PLANTARUM, 2017, 61 (03) : 557 - 564
  • [16] Diversity and genetic structure of teak (Tectona grandis L.f) in its natural range using DNA microsatellite markers
    Inza Jesus Fofana
    Daniel Ofori
    Mireille Poitel
    Daniel Verhaegen
    New Forests, 2009, 37 : 175 - 195
  • [17] Morphological and physiological responses to drought stress of carob trees in Mediterranean ecosystems
    Zagoub, Khouloud
    Krichen, Khouloud
    Chaieb, Mohamed
    Mnif, Lobna F.
    JOURNAL OF ARID LAND, 2023, 15 (05) : 562 - 577
  • [18] Unravelling drought and salinity stress responses in barley genotypes: physiological, biochemical, and molecular insights
    Alsamadany, Hameed
    Abdulbaki, Abdulbaki Shehu
    Alzahrani, Yahya
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [19] Physiological Responses of Hollyhock (Alcea rosea L.) to Drought Stress
    Sadeghi, Arezoo
    Karimmojeni, Hassan
    Razmjoo, Jamshid
    Baldwin, Timothy C.
    HORTICULTURAE, 2024, 10 (08)
  • [20] Molecular and Physiological Responses of Rice and Weedy Rice to Heat and Drought Stress
    Piveta, Leonard Bonilha
    Roma-Burgos, Nilda
    Noldin, Jose Alberto
    Viana, Vivian Ebeling
    Oliveira, Claudia de
    Lamego, Fabiane Pinto
    Avila, Luis Antonio de
    AGRICULTURE-BASEL, 2021, 11 (01): : 1 - 23