Design and Mechanisms of Asymmetric Supercapacitors

被引:2335
作者
Shao, Yuanlong [1 ,2 ,4 ]
El-Kady, Maher F. [2 ]
Sun, Jingyu [5 ]
Li, Yaogang [6 ]
Zhang, Qinghong [1 ]
Zhu, Meifang [1 ]
Wang, Hongzhi [1 ]
Dunn, Bruce [3 ,7 ]
Kaner, Richard B. [2 ,3 ,7 ]
机构
[1] Donghua Univ, State Key Lab Modificat Chem Fibers & Polymer Mat, Coll Mat Sci & Engn, Shanghai 201620, Peoples R China
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[4] Univ Cambridge, Cambridge Graphene Ctr, Dept Engn, Cambridge CB3 0FA, England
[5] Soochow Univ, Coll Energy, Soochow Inst Energy & Mat Innovat SIEMIS, Suzhou 215006, Peoples R China
[6] Donghua Univ, Engn Res Ctr Adv Glasses Mfg Technol, Minist Educ, Shanghai 201620, Peoples R China
[7] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
关键词
HIGH-ENERGY DENSITY; QUARTZ-CRYSTAL MICROBALANCE; IONIC-LIQUID ELECTROLYTE; ELECTRICAL DOUBLE-LAYER; HYBRID ELECTROCHEMICAL CAPACITOR; PSEUDOCAPACITIVE CHARGE STORAGE; ANGLE NEUTRON-SCATTERING; REDUCED GRAPHENE OXIDE; TIO2 NANOTUBE ARRAYS; IN-SITU NMR;
D O I
10.1021/acs.chemrev.8b00252
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ongoing technological advances in diverse fields including portable electronics, transportation, and green energy are often hindered by the insufficient capability of energy-storage devices. By taking advantage of two different electrode materials, asymmetric supercapacitors can extend their operating voltage window beyond the thermodynamic decomposition voltage of electrolytes while enabling a solution to the energy storage limitations of symmetric supercapacitors. This review provides comprehensive knowledge to this field. We first look at the essential energy storage mechanisms and performance evaluation criteria for asymmetric supercapacitors to understand the wide-ranging research conducted in this area. Then we move to the recent progress made for the design and fabrication of electrode materials and the overall structure of asymmetric supercapacitors in different categories. We also highlight several key scientific challenges and present our perspectives on enhancing the electrochemical performance of future asymmetric supercapacitors.
引用
收藏
页码:9233 / 9280
页数:48
相关论文
共 398 条
[1]   Strategies to Improve the Performance of Carbon/Carbon Capacitors in Salt Aqueous Electrolytes [J].
Abbas, Q. ;
Ratajczak, P. ;
Babuchowska, P. ;
Le Comte, A. ;
Belanger, D. ;
Brousse, T. ;
Beguin, F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (05) :A5148-A5157
[2]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/nnano.2015.40, 10.1038/NNANO.2015.40]
[3]   An advanced hybrid electrochemical capacitor that uses a wide potential range at the positive electrode [J].
Aida, Taira ;
Yamada, Koji ;
Morita, Masayuki .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (12) :A534-A536
[4]   Mechanisms and Designs of Asymmetrical Electrochemical Capacitors [J].
Akinwolemiwa, Bamidele ;
Wei, Chaohui ;
Chen, George Z. .
ELECTROCHIMICA ACTA, 2017, 247 :344-357
[5]   Redox Electrolytes in Supercapacitors [J].
Akinwolemiwa, Bamidele ;
Peng, Chuang ;
Chen, George Z. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (05) :A5054-A5059
[6]   An asymmetric hybrid nonaqueous energy storage cell [J].
Amatucci, GG ;
Badway, F ;
Du Pasquier, A ;
Zheng, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) :A930-A939
[7]  
An KH, 2001, ADV MATER, V13, P497, DOI 10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO
[8]  
2-H
[9]   Self-Discharge in Electrochemical Capacitors: A Perspective Article [J].
Andreas, Heather A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (05) :A5047-A5053
[10]   The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template [J].
Ania, Conchi O. ;
Khomenko, Volodymyr ;
Raymundo-Pinero, Encarnacion ;
Parra, Jose B. ;
Beguin, Francois .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (11) :1828-1836