PARAMETER ESTIMATION IN A GIBBS-MARKOV FIELD TEXTURE MODEL BASED ON A CODING APPROACH

被引:0
|
作者
Martinez, Jorge [1 ]
Pistonesi, Silvina [1 ]
Cristina Maciel, Maria [1 ]
Georgina Flesia, Ana [2 ]
机构
[1] Univ Nacl Sur, Dept Matemat, Bahia Blanca, Buenos Aires, Argentina
[2] Univ Nacl Cordoba, Fac Matemat Astron & Fis, Cordoba, Argentina
关键词
Parameter estimation; gibbs-markov model; conditional least square; coding; parallel computing; STATISTICAL-ANALYSIS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a novel approach of the Conditional Least Square (CLS) estimator based on a coding scheme, for estimating the parameter vector associated with an Auto-Binomial model. This method provides a parallel solver for the estimation process. In order to illustrate the performance of the proposed approach, we carried out a Monte Carlo study and a real application for landscape classification using a high-resolution Pleiades-1A satellite image. Experimental results demonstrated the effectiveness of our estimation approach as well as CLS method, but in a lower runtime.
引用
收藏
页码:105 / 109
页数:5
相关论文
共 50 条