Multi-component structure of nonlinear excitations in systems with length-scale competition

被引:17
作者
Christiansen, PL [1 ]
Gaididei, YB
Mertens, FG
Mingaleev, SF
机构
[1] Tech Univ Denmark, Dept Math Modelling, DK-2800 Lyngby, Denmark
[2] Bogolyubov Inst Theoret Phys, UA-03143 Kiev, Ukraine
[3] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany
关键词
D O I
10.1007/s100510170300
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We investigate the properties of nonlinear excitations in different types of soliton carrying systems with long-range dispersive interactions. We show that length-scale competition in such systems, universally results: in a multi-component structure of nonlinear excitations which may lead to a new type of multistability: coexistence of different nonlinear excitations at the same value of the spectral parameter (i. e., velocity in the case of anharmonic lattices of frequency in nonlinear Schrodinger models).
引用
收藏
页码:545 / 553
页数:9
相关论文
共 50 条
[41]   LENGTH-SCALE COMPETITION IN THE DAMPED SINE-GORDON CHAIN WITH SPATIOTEMPORAL PERIODIC DRIVING [J].
CAI, D ;
BISHOP, AR ;
SANCHEZ, A .
PHYSICAL REVIEW E, 1993, 48 (02) :1447-1452
[42]   Random vibration study of structures under multi-component seismic excitations [J].
Xue, S.D. ;
Cao, Z. ;
Wang, X.S. .
Advances in Structural Engineering, 2002, 5 (03) :185-192
[43]   Structure of multi-component/multi-Yukawa mixtures [J].
Blum, L. ;
Arias, M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (36) :S2437-S2449
[44]   Integrated layout and topology optimization design of multi-component systems under harmonic base acceleration excitations [J].
Tao Liu ;
Ji-Hong Zhu ;
Wei-Hong Zhang ;
Hua Zhao ;
Jie Kong ;
Tong Gao .
Structural and Multidisciplinary Optimization, 2019, 59 :1053-1073
[45]   Integrated layout and topology optimization design of multi-component systems under harmonic base acceleration excitations [J].
Liu, Tao ;
Zhu, Ji-Hong ;
Zhang, Wei-Hong ;
Zhao, Hua ;
Kong, Jie ;
Gao, Tong .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 59 (04) :1053-1073
[46]   Multi-component delocalized nonlinear vibrational modes in nickel [J].
Bachurina, O., V ;
Murzaev, R. T. ;
Shcherbinin, S. A. ;
Kudreyko, A. A. ;
Dmitriev, S., V ;
Bachurin, D., V .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2023, 31 (07)
[47]   REDUCED ORDER MODELING FOR NONLINEAR MULTI-COMPONENT MODELS [J].
Abdel-Khalik, Hany S. ;
Bang, Youngsuk ;
Kennedy, Christopher ;
Hite, Jason .
INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2012, 2 (04) :341-361
[48]   Nonlinear modelling of a rotating multi-component dusty plasma [J].
Kourakis, I. ;
Abdelsalam, U. M. ;
Moslem, W. M. ;
Sbukla, P. K. .
MULTIFACETS OF DUSTY PLASMA, 2008, 1041 :267-+
[49]   NOTE ON THE DERIVATION OF MULTI-COMPONENT FLOW SYSTEMS [J].
Bresch, D. ;
Hillairet, M. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (08) :3429-3443
[50]   Diagnosis for Systems with Multi-component Wear Interactions [J].
Assaf, R. ;
Do, P. ;
Scarf, P. ;
Nefti-Meziani, S. .
2017 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2017, :96-102