Ni-Co layered double hydroxide coated on microsphere nanocomposite of graphene oxide and single-walled carbon nanohorns as supercapacitor electrode material

被引:23
作者
Kim, Ji Hoon [1 ,2 ]
Ko, Yong-il [1 ]
Lee, Seo Yun [1 ,2 ]
Lee, Yun Seon [1 ]
Kim, Su Kyung [1 ]
Kim, Yoong Ahm [2 ]
Yang, Cheol-Min [1 ]
机构
[1] Korea Inst Sci & Technol KIST, Inst Adv Composite Mat, 92 Chudong Ro, Wanju Gun 55324, Jeollabuk Do, South Korea
[2] Chonnam Natl Univ, Grad Sch, Dept Polymer Engn, 77 Yongbong Ro, Gwangju 61186, South Korea
关键词
graphene oxide; layered double hydroxide; pseudocapacitor; single-walled carbon nanohorn; supercapacitor; POROUS NICO2O4; PERFORMANCE; CAPACITANCE; IMPROVEMENT; NANOSHEETS; NANOFIBER; VOLTAGE; FILMS; CO3O4; SIZE;
D O I
10.1002/er.8657
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Ni-Co layered double hydroxides (LDH) have received considerable attention as excellent pseudocapacitor electrode materials. In this paper, a novel utilization of the composite of graphene oxide (GO) and single-walled carbon nanohorns (SWCNHs) is reported as an effective substrate for LDH coatings. We successfully synthesized hierarchical nanostructures composed of Ni-Co LDH as well as microsphere composites of GO and oxidized SWCNHs (o-NH). A dense microsphere composite of GO and o-NH was synthesized using the spray-drying method (s-(GO/o-NH)). Subsequently, the prepared Ni-Co LDH nanosheets were directly coated on the s-(GO/o-NH) microspheres using the hydrothermal method (LDH@s-(GO/o-NH)). Moreover, the electrochemical characteristics of the LDH@s-(GO/ o-NH) supercapacitor electrodes were evaluated in a 6 M KOH electrolyte. In the three-electrode system, the LDH@s-(GO/o-NH) composite electrode exhibited a significantly high gravimetric specific capacitance (1046 F g(-1) at 1 mV s(-1)) and excellent specific capacitance retention (84% retention after 10 000 cycles at 100 mV s(-1)) compared with 211 F g(-1) and 79% for the LDH@s-GO composite electrode, respectively. The supercapacitive behavior of the LDH@s-GO and LDH@s-(GO/o-NH) electrodes in the two-electrode system exhibited a trend similar to that of the three-electrode system. The superior electrochemical performance of the LDH@s-(GO/o-NH) composite electrode can be ascribed to its high electrical conductivity and pseudocapacitance, indicating that the s-(GO/o-NH) microsphere composite with an interconnected pore network structure can be utilized as a support for effectively coating Ni-Co LDH components. The LDH@s-(GO/o-NH) composite electrode is a promising candidate for pseudocapacitor applications because of its excellent electrochemical characteristics and facile synthesis, making it suitable for industrial and consumer applications.
引用
收藏
页码:23564 / 23577
页数:14
相关论文
共 63 条
[1]   A controllable top-down etching and in-situ oxidizing strategy: metal-organic frameworks derived α-Co/Ni(OH)2@Co3O4 hollow nanocages for enhanced supercapacitor performance [J].
Bao, Yuxiang ;
Deng, Ying ;
Wang, Moze ;
Xiao, Zhenyu ;
Wang, Minghui ;
Fu, Yunlei ;
Guo, Ziyang ;
Yang, Yu ;
Wang, Lei .
APPLIED SURFACE SCIENCE, 2020, 504
[2]   Specific surface area and pore size distribution in gas shales of Raniganj Basin, India [J].
Boruah, Annapurna ;
Rasheed, Abdul ;
Mendhe, Vinod Atmaram ;
Ganapathi, S. .
JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2019, 9 (02) :1041-1050
[3]   Electrochemical properties of free-standing polypyrrole/graphene oxide/zinc oxide flexible supercapacitor [J].
Chee, Wei Kit ;
Lim, Hong Ngee ;
Huang, Nay Ming .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2015, 39 (01) :111-119
[4]   Nickel- Cobalt Layered Double Hydroxide Nanosheets for High- performance Supercapacitor Electrode Materials [J].
Chen, Hao ;
Hu, Linfeng ;
Chen, Min ;
Yan, Yan ;
Wu, Limin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (07) :934-942
[5]   Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors [J].
Chen, Hongyuan ;
Zeng, Sha ;
Chen, Minghai ;
Zhang, Yongyi ;
Li, Qingwen .
CARBON, 2015, 92 :271-296
[6]   The Development of Pseudocapacitor Electrodes and Devices with High Active Mass Loading [J].
Chen, Ri ;
Yu, Miao ;
Sahu, Rakesh P. ;
Puri, Ishwar K. ;
Zhitomirsky, Igor .
ADVANCED ENERGY MATERIALS, 2020, 10 (20)
[7]   Asymmetric Supercapacitor Electrodes and Devices [J].
Choudhary, Nitin ;
Li, Chao ;
Moore, Julian ;
Nagaiah, Narasimha ;
Zhai, Lei ;
Jung, Yeonwoong ;
Thomas, Jayan .
ADVANCED MATERIALS, 2017, 29 (21)
[8]   A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application [J].
Danish, Mohammed ;
Ahmad, Tanweer .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 87 :1-21
[9]   Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors [J].
Deng, Fangze ;
Yu, Lin ;
Cheng, Gao ;
Lin, Ting ;
Sun, Ming ;
Ye, Fei ;
Li, Yongfeng .
JOURNAL OF POWER SOURCES, 2014, 251 :202-207
[10]   Boosting the capacitance of NiCo2O4 hierarchical structures on nickel foam in supercapacitors [J].
Du, Hongmei ;
Li, Yeyu ;
Ding, Feifei ;
Zhao, Jinsheng ;
Zhang, Xianxi ;
Li, Yunwu ;
Zhao, Ruijuan ;
Cao, Mengting ;
Yu, Tiantian ;
Xu, Xuejuan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (32) :15348-15357