Active site structure study of Cu/Plate ZnO model catalysts for CO2 hydrogenation to methanol under the real reaction conditions

被引:63
作者
Sun, Yuhai [1 ]
Huang, Chunlei [1 ]
Chen, Limin [1 ,2 ,3 ]
Zhang, Yujun [1 ]
Fu, Mingli [1 ,2 ,3 ]
Wu, Junliang [1 ,2 ,3 ]
Ye, Daiqi [1 ,2 ,3 ]
机构
[1] South China Univ Technol, Sch Environm & Energy, Guangzhou 510006, Peoples R China
[2] South China Univ Technol, Natl Engn Lab VOCs Pollut Control Technol & Equip, Guangzhou 510006, Peoples R China
[3] South China Univ Technol, Guangdong Prov Key Lab Atmospher Environm & Pollu, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; hydrogenation; Methanol production; Cu/Plate ZnO model catalysts; Cu-ZnO interface; Active site structures; CARBON-DIOXIDE HYDROGENATION; CONTACT QUANTIFICATION MODEL; METAL-OXIDE INTERFACE; COPPER; SYNERGY; CALCINATION; MECHANISMS; REDUCTION; ORIGIN; GAS;
D O I
10.1016/j.jcou.2019.11.029
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plate-like ZnO, dominantly exposed (002) polar facet, supported Cu catalysts were prepared by impregnation method as model catalysts for CO2 hydrogenation to methanol under the real reaction conditions. The catalysts were thoroughly characterized by Scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), in situ Raman spectra, Temperature-programmed reduction (H-2-TPR) and CO2 Temperature-programmed desorption (CO2-TPD). Catalyst microstructures can be obviously tuned through the increasing of Cu content, interface constituted by Cu-Plate ZnO direct contact, interface constituted by Cu (on ZnO) covered by migrated ZnOx and interface constituted by isolated Cu nanoparticles covered by migrated ZnOx. These microstructures displayed different catalytic performance for CO2 hydrogenation to methanol; among them, interface caused by the migrated ZnOx covered Cu nanoparticles should play vital roles for methanol production.
引用
收藏
页码:55 / 64
页数:10
相关论文
共 57 条
[1]  
[Anonymous], 2009, IMPREGNATION DRYING
[2]   CO2 activation and promotional effect in the oxidation of cyclic olefins over mesoporous carbon nitrides [J].
Ansari, Mohd Bismillah ;
Min, Byung-Hoon ;
Mo, Yong-Hwan ;
Park, Sang-Eon .
GREEN CHEMISTRY, 2011, 13 (06) :1416-1421
[3]   Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2 [J].
Aresta, Michele ;
Dibenedetto, Angela ;
Angelini, Antonella .
CHEMICAL REVIEWS, 2014, 114 (03) :1709-1742
[4]   Quantum-sized ZnO nanoparticles: Synthesis, characterization and sensing properties for NO2 [J].
Bai, Shouli ;
Hu, Jingwei ;
Li, Dianqing ;
Luo, Ruixian ;
Chen, Aifan ;
Liu, Chung Chiun .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (33) :12288-12294
[5]  
Behrens M, 2012, SCIENCE, V336, P893, DOI [10.1126/science.1219831, 10.1126/science.12198331]
[6]   Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries [J].
Centi, Gabriele ;
Quadrelli, Elsje Alessandra ;
Perathoner, Siglinda .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1711-1731
[7]   The role of ZnO in Cu/ZnO methanol synthesis catalysts - morphology effect or active site model? [J].
Choi, Y ;
Futagami, K ;
Fujitani, T ;
Nakamura, J .
APPLIED CATALYSIS A-GENERAL, 2001, 208 (1-2) :163-167
[8]   One-step growth of ZnO from film to vertically well-aligned nanorods and the morphology-dependent Raman scattering [J].
Cong, GW ;
Wei, HY ;
Zhang, PF ;
Peng, WQ ;
Wu, JJ ;
Liu, XL ;
Jiao, CM ;
Hu, WG ;
Zhu, QS ;
Wang, ZG .
APPLIED PHYSICS LETTERS, 2005, 87 (23) :1-3
[9]   Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model [J].
Cox, PM ;
Betts, RA ;
Jones, CD ;
Spall, SA ;
Totterdell, IJ .
NATURE, 2000, 408 (6809) :184-187
[10]   Synthesis of methanol and dimethyl ether from the CO2 hydrogenation over Cu•ZnO supported on Al2O3 and Nb2O5 [J].
da Silva, Renata J. ;
Pimentel, Allan F. ;
Monteiro, Robson S. ;
Mota, Claudio J. A. .
JOURNAL OF CO2 UTILIZATION, 2016, 15 :83-88