On analyzing the errors in a selectivity estimation method using a multidimensional file structure

被引:0
|
作者
Kim, SW [1 ]
Whang, WK [1 ]
Whang, KY [1 ]
机构
[1] Kangweon Natl Univ, Dept Informat & Telecommun Engn, Chunchon 200701, Kangwon Do, South Korea
关键词
D O I
10.1109/CMPSAC.1998.716635
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
lit this paper, we discuss the errors in selectivity estimation using the multilevel grid file(MLGF), a file structure. cause of the estimation errors, and then investigate five factors affecting the accuracy of estimation: (I) the data distribution in a region, (2) the number of records stored in the MLGF, (3) the page size, (4) the query region size, and (5) the level of the MLGF directory. Next, we present through extensive experiments the tendency of estimation errors when the value for each factor changes. The results show that the errors decrease when (1) the distribution of records in a region becomes closer to the uniform one, (2) the number of records in the MLGF increases, (3) the page size decreases, (4) the query region size increases, and (5) the level of the MLGF directory containing data distribution information becomes lower. We define the granule ratio, the core formula representing the basic relationship between the estimation error and the above five factors, and finally examine the change of estimation errors in relation with the change of the granule ratio through experiments. The results indicate that with a specific value for the granule ratio, errors tend to be similar regardless bf different values for the five factors.
引用
收藏
页码:48 / 54
页数:7
相关论文
共 50 条
  • [31] Using model checking to find serious file system errors
    Yang, Junfeng
    Twohey, Paul
    Engler, Dawson
    Musuvathi, Madanlal
    ACM TRANSACTIONS ON COMPUTER SYSTEMS, 2006, 24 (04): : 393 - 423
  • [32] Correction of patient medical record errors through a file control method
    Sungur, Cuma
    Songur, Levent
    Cicek, Aysegul Copur
    Top, Mehmet
    HEALTH POLICY AND TECHNOLOGY, 2019, 8 (04) : 329 - 336
  • [33] A Practical Estimation Method for Analyzing Adverse Drug Reactions Using Data Mining
    Yuko Shirakuni
    Kousuke Okamoto
    Etuko Uejima
    Shigeki Inui
    Jun-ichi Takahara
    Takanori Ohgaru
    Hiroyuki Yamasaki
    Yushi Tian
    Norihito Kawashita
    Ran Inoue
    Teruo Yasunaga
    Tatsuya Takagi
    Therapeutic Innovation & Regulatory Science, 2013, 47 (2) : 235 - 241
  • [34] A Practical Estimation Method for Analyzing Adverse Drug Reactions Using Data Mining
    Shirakuni, Yuko
    Okamoto, Kousuke
    Uejima, Etuko
    Inui, Shigeki
    Takahara, Jun-ichi
    Ohgaru, Takanori
    Yamasaki, Hiroyuki
    Tian, Yushi
    Kawashita, Norihito
    Inoue, Ran
    Yasunaga, Teruo
    Takagi, Tatsuya
    THERAPEUTIC INNOVATION & REGULATORY SCIENCE, 2013, 47 (02) : 235 - 241
  • [35] A METHOD TO CALCULATE NUMERICAL ERRORS USING ADJOINT ERROR ESTIMATION FOR LINEAR ADVECTION
    Connors, Jeffrey M.
    Banks, Jeffrey W.
    Hittinger, Jeffrey A.
    Woodward, Carol S.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) : 894 - 926
  • [36] Errors-in-variables identification using a generalized instrumental variable estimation method
    Soderstrom, Torsten
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 322 - 327
  • [37] Using wavelet packets for selectivity estimation
    Ilić, S.S. (sinisa.ilic@pr.ac.rs), 1600, Oxford University Press (56):
  • [38] Using Wavelet Packets for Selectivity Estimation
    Ilic, S. S.
    Spalevic, P.
    COMPUTER JOURNAL, 2013, 56 (07): : 827 - 842
  • [39] Selectivity estimation using orthogonal series
    Yan, F
    Hou, WC
    Zhu, Q
    EIGHTH INTERNATIONAL CONFERENCE ON DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PROCEEDINGS, 2003, : 157 - 164
  • [40] Selectivity estimation using probabilistic models
    Getoor, L
    Taskar, B
    Koller, D
    SIGMOD RECORD, 2001, 30 (02) : 461 - 472