Determining the thermal diffusivity in microcalorimeter absorbers and its effect on detector response

被引:12
作者
Saab, T. [1 ]
Figueroa-Feliciano, E. [1 ]
Iyomoto, N. [1 ]
Bandler, S. R. [1 ]
Chervenak, J. A. [1 ]
Kelley, R. L. [1 ]
Kilbourne, C. A. [1 ]
Porter, F. S. [1 ]
Sadleir, J. E. [1 ]
机构
[1] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
关键词
D O I
10.1063/1.2811882
中图分类号
O59 [应用物理学];
学科分类号
摘要
An x-ray microcalorimeter consists of an absorber and a thermometer connected to each other, and to a heat sink, via well defined thermal conductances. The standard theoretical derivation of energy resolution treats the absorber and thermometer as point elements that are internally isothermal. In reality, the finite size and internal diffusivity of the absorber and thermometer prevents these elements from instantly achieving a uniform temperature, leading to a variation in observed pulse shapes as a function of the interaction's position within the absorber. These variations result in a distortion of the detector response and a subsequent degradation of the energy resolution. This paper presents diffusivity measurements for x-ray microcalorimeters fabricated at the NASA/GSFC. Using a diffusion model we developed, we show quantitatively how a 2 eV Gaussian response is distorted into a non-Gaussian profile roughly 12 eV wide at an energy of 6 keV for an absorber diffusivity of 10(4) mu m(2)/mu s. We then present a method for eliminating the effect of pulse shape variation on the detector energy response with a modified optimal filter approach. (C) 2007 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 16 条
[1]   Complex microcalorimeter models and their application to position-sensitive detectors [J].
Figueroa-Feliciano, Enectali .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (11)
[2]  
FIGUEROAFELICIA.E, COMMUNICATION
[3]   Microcalorimeter and bolometer model [J].
Galeazzi, M ;
McCammon, D .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (08) :4856-4869
[4]  
HOEVERS HFC, 2006, METHODS PHYS RES A, V559, P702
[5]   X-ray detection using a superconducting transition-edge sensor microcalorimeter with electrothermal feedback [J].
Irwin, KD ;
Hilton, GC ;
Wollman, DA ;
Martinis, JM .
APPLIED PHYSICS LETTERS, 1996, 69 (13) :1945-1947
[6]   Optimization of X-ray absorbers for TES microcalorimeters [J].
Iyomoto, N ;
Sadleir, JE ;
Figueroa-Feliciano, E ;
Saab, T ;
Bandler, S ;
Kilbourne, C ;
Chervenak, J ;
Talley, D ;
Finkbeiner, F ;
Brekosky, R ;
Lindeman, M ;
Kelley, R ;
Porter, FS ;
Boyce, K .
HIGH-ENERGY DETECTORS IN ASTRONOMY, 2004, 5501 :145-154
[7]  
KILBOURNE CA, 2006, P SPIE, V6266
[8]  
Lounasmaa O. V., 1974, Experimental Principles and Methods
[9]   ADVANCES TOWARD HIGH SPECTRAL RESOLUTION QUANTUM X-RAY CALORIMETRY [J].
MOSELEY, SH ;
KELLEY, RL ;
SCHOELKOPF, RJ ;
SZYMKOWIAK, AE ;
MCCAMMON, D ;
ZHANG, J .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1988, 35 (01) :59-64
[10]   THERMAL DETECTORS AS X-RAY SPECTROMETERS [J].
MOSELEY, SH ;
MATHER, JC ;
MCCAMMON, D .
JOURNAL OF APPLIED PHYSICS, 1984, 56 (05) :1257-1262