An algorithm for fractional Schrodinger equation in case of Morse potential

被引:16
作者
Al-Raeei, Marwan [1 ]
E-Daher, Moustafa Sayem [2 ,3 ]
机构
[1] Damascus Univ, Fac Sci, Damascus, Syria
[2] Arab Int Univ, Fac Informat & Commun, Daraa, Syria
[3] Damascus Univ, Higher Inst Laser Applicat & Res, Damascus, Syria
关键词
GROUND-STATE; DIFFERENTIAL-EQUATIONS; TIME; QUANTUM; SPACE; MECHANICS; ENERGY; DISSOCIATION; COMPLEX; SYSTEMS;
D O I
10.1063/1.5113593
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Based on methods of numerical integration and Riemann-Liouville definition of the fractional derivatives, we find a numerical algorithm to find solutions of the time independent fractional Schrodinger equation for Morse potential or the quantum oscillator potential in one dimension, and the iteration formula is applied for multiple values of the fractional parameter of the space dependent fractional Schrodinger equation and multiple values of energy. We define and use the dimensionless form of the space dependent fractional Schrodinger equation of Morse potential. We employ the iteration formula of the time independent fractional Schrodinger equation of Morse potential to find the wave functions in the case of hydrogen chloride and hydrogen fluoride molecules for a certain value of the fractional parameter of the space dependent fractional Schrodinger equation and for many values of the dimensionless energy of each molecule. (c) 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:13
相关论文
共 97 条
  • [31] Higher-dimensional fractional time-independent Schrodinger equation via fractional derivative with generalised pseudoharmonic potential
    Das, Tapas
    Ghosh, Uttam
    Sarkar, Susmita
    Das, Shantanu
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2019, 93 (05):
  • [32] The second hyperpolarizability of systems described by the space-fractional Schrodinger equation
    Dawson, Nathan J.
    Nottage, Onassis
    Kounta, Moussa
    [J]. PHYSICS LETTERS A, 2018, 382 (01) : 55 - 59
  • [33] Matrix elements for the Morse potential under an external field
    de Lima, EF
    Hornos, JEM
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2005, 38 (07) : 815 - 825
  • [34] Space-time fractional Schrodinger equation with time-independent potentials
    Dong, Jianping
    Xu, Mingyu
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 1005 - 1017
  • [35] Some solutions to the space fractional Schrodinger equation using momentum representation method
    Dong, Jianping
    Xu, Mingyu
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
  • [36] Edeki SO, 2016, COMMUN MATH APPL, V7, P1
  • [37] Eid R, 2011, ROM J PHYS, V56, P323
  • [38] On fractional Schrodinger equation in α-dimensional fractional space
    Eid, Rajeh
    Muslih, Sami I.
    Baleanu, Dumitru
    Rabei, E.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (03) : 1299 - 1304
  • [39] Fallahgoul HA, 2017, FRACTIONAL CALCULUS AND FRACTIONAL PROCESSES WITH APPLICATIONS TO FINANCIAL ECONOMICS: THEORY AND APPLICATION, P1
  • [40] A numerical method for the fractional Schrodinger type equation of spatial dimension two
    Ford, Neville J.
    Manuela Rodrigues, M.
    Vieira, Nelson
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (02) : 454 - 468