Evidence for light-controlled migration amplitude of a sound scattering layer in the Norwegian Sea

被引:26
作者
Norheim, Eirik [1 ,2 ]
Klevjer, Thor A. [3 ]
Aksnes, Dag L. [1 ,2 ]
机构
[1] Univ Bergen, Dept Biol, N-5020 Bergen, Norway
[2] Hjort Ctr Marine Ecosyst Dynam, N-5020 Bergen, Norway
[3] Inst Marine Res, N-5005 Bergen, Norway
关键词
Mesopelagic; Scattering layers; Vertical migration; Light; Norwegian Sea; High latitude; DIEL VERTICAL MIGRATION; PATTERNS; ZOOPLANKTON; FISH; BEHAVIOR; OXYGEN; DEPTH; WATER;
D O I
10.3354/meps11731
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The oceanic sound scattering layer (SL) is an ubiquitous acoustic signature of mesopelagic fishes and invertebrates that are important food sources for the oceanic macrofauna and players in the biological carbon pump. We investigated the relationship between SL migration amplitude and light in the Norwegian Sea. Incoming surface irradiance was measured continuously during night and day. The increasing latitude of the cruise track facilitated a field experiment wherein night light increased 2 to 3 orders of magnitude during the study period. Concurrent with increased night light, the diel vertical migration amplitude of the SL decreased several hundred meters. The variations in irradiance at the sea surface spanned 6 orders of magnitude during the study period, while the ambient irradiance of the SL mean depth was relatively constant during both day- and nighttime. For the deepest penetrating wavelength (486 nm), the average ambient light was estimated to be 2 x 10(-6) mW m(-2) nm(-1), which corresponded to a total irradiance of 1.9 x 10(-7) mu mol quanta m(-2) s(-1). The observed variation in migration amplitude is consistent with a behavior whereby the SL organisms keep their ambient light intensities within a particular range. We also observed that SL total backscattering, a proxy for biomass, decreased along with the decrease in migration amplitude. We speculate whether this decrease might, in part, relate to a previously proposed 'photoperiod constraint hypothesis' suggesting that high night light intensities in summer at high latitudes limit options for safe foraging in upper layers at night.
引用
收藏
页码:45 / 52
页数:8
相关论文
共 25 条
[1]  
[Anonymous], 2004, In the Norwegian Sea ecosystem, 2004
[2]   Nocturnal light and lunar cycle effects on diel migration of micronekton [J].
Benoit-Bird, Kelly J. ;
Au, Whitlow W. L. ;
Wisdom, Daniel W. .
LIMNOLOGY AND OCEANOGRAPHY, 2009, 54 (05) :1789-1800
[3]   Global patterns of diel vertical migration times and velocities from acoustic data [J].
Bianchi, Daniele ;
Mislan, K. A. S. .
LIMNOLOGY AND OCEANOGRAPHY, 2016, 61 (01) :353-364
[4]   Intensification of open-ocean oxygen depletion by vertically migrating animals [J].
Bianchi, Daniele ;
Galbraith, Eric D. ;
Carozza, David A. ;
Mislan, K. A. S. ;
Stock, Charles A. .
NATURE GEOSCIENCE, 2013, 6 (07) :545-548
[5]  
Cohen JH, 2009, OCEANOGR MAR BIOL, V47, P77
[6]  
DICKSON RR, 1972, J CONSEIL, V34, P416
[7]  
Douglas RH, 1997, J FISH BIOL, V50, P68
[8]   Diel vertical migration of the deep-water jellyfish Periphylla periphylla simulated as individual responses to absolute light intensity [J].
Dupont, Nicolas ;
Klevjer, T. A. ;
Kaartvedt, S. ;
Aksnes, D. L. .
LIMNOLOGY AND OCEANOGRAPHY, 2009, 54 (05) :1765-1775
[9]  
Fornshell J.A., 2013, Int. J. Oceanogr, V2013, P1, DOI DOI 10.1155/2013/678621
[10]   Effects of a decrease in downwelling irradiance on the daytime vertical distribution patterns of zooplankton and micronekton [J].
Frank, TM ;
Widder, EA .
MARINE BIOLOGY, 2002, 140 (06) :1181-1193